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TECHNICAL PAPER

LIMIT CYCLE VIBRATIONS IN TURBOMACHINERY

I. INTRODUCTION

High speed turbomachinery is used in many industrial and government applications.

These include natural gas compressors, turbines in electric power plants, jet engines, and rocket

engine turbopumps. Despite the differences in application, these machines are all susceptible to a

variety of common vibration problems. The most common vibration problem encountered with any

rotating machinery is rotor unbalance vibration. This problem has received much attention over

the last century and is well understood. Another common problem is dynamic instability. This

problem is well understood for situations that can be treated using linear analysis techniques;
however, the limit cycle instabilities that can occur in nonlinear systems have not received as

much attention. A third problem encountered in high speed turbomachinery is subharmonic

response to unbalance excitation. This phenomenon requires either nonlinear system character-

istics or time varying coefficients. This problem has been studied extensively for simple nonlinear

systems. A significant amount of study has been done for turbomachinery experiencing this

problem.

These last two problem areas have each received adequate treatment individually.

However, situations have occurred where a turbomachine was found to be susceptible to both

limit cycle instability and subharmonic response for apparently the same operating conditions.
For example, the high pressure fuel turbopump (HPFTP) of NASA's space shuttle main engine

(SSME) has a history of exhibiting subsynchronous vibration at frequencies ranging from 47 to

56 percent of shaft rotational speed. This includes many occurrences at exactly 50 percent which

could be attributed to a limit cycle instability or a subharmonic response. This appears to be a

case of what Hayashi 1 refers to as transition between almost periodic oscillations (limit cycle)
and entrained subharmonic oscillations. This makes it difficult to determine whether a

(catastrophic) divergent instability is impending or whether the machine is experiencing sub-
harmonic response. An examination of this condition is the focus of this report. Before proceeding
with the discussion of the combination of these two phenomena, a review of the prior work for

each individual problem is in order.

General discussions of subharmonic resonance can be found in many vibration texts such

as the works of Den Hartog 2 and Timoshenko. 3 More detailed analysis can be found in nonlinear

vibration texts such as that of Hayashi. 1 These works deal primarily with a single nonlinear

second order equation representing 1 degree-of-freedom (DOF). Tondl 4 provides a thorough
treatment for 2-DOF models of rotating machinery. Ehrich 5 and Childs 6 have each published

analyses of rotating machinery having nonlinearity in the form of a clearance or deadband in the
restoring force. Asymmetry in the nonlinear restoring force was required to demonstrate sub-

harmonic response. This asymmetry will occur in the presence of deadband when a static load is

present or when rotor-stator misalignment exists. Bently 7 performed an experimental study

using a laboratory model rotor. Each of these researchers reached essentially the same conclu-

sions regarding subharmonic response. Namely, the resonance of a nonlinear rotordynamic sys-

tem can be excited by a frequency that is near an integer multiple of it. The range of excitation



frequenciesfor which this phenomenonwill occurdependson the natureof the nonlinearity and
the other system characteristics.The responsewill be such that the nonlinear resonancefre-
quencyis tuned to a fraction of the excitationfrequency(e.g., 1/2). Hayashi1 describedthis as
subharmonicentrainment.

Thorough treatmentsof thecausesof dynamicinstability canbe found in many references.
Vance8 devotesanentire chapterto the subjectandprovidesanexcellentbibliography. Ehrich9
provides a general surveyof the fundamentalcausesof instability and gives some insight into
meansfor avoiding them.With regardto thetype of instabilitiesconsideredhere,Ehrich states:

"... the unifying generality is the generationof a tangential force, normal to an
arbitraryradial deflectionof a rotatingshaft,whosemagnitudeis proportional to (or
varies monotonicallywith) that deflection.At some'onset'rotational speed,sucha
force system will overcome the stabilizing external damping forces which are
generally present, and induce a whirling motion of ever-increasing amplitude,
limited only by nonlinearitieswhichultimately limit deflections."

The tangentialforcecanbegeneratedby a varietyof sources.Among thesearefluid beatingsand
seals,turbine aerodynamicforces, andshaft internal dampingforces.Thesetangentialforces, as
well as the restoring and dissipative forces, are usually representedby linear stiffness and
damping coefficients. The coefficients for the tangentialforce are usually called cross-coupled
stiffness and damping, respectively.For fluid bearingsand seals,the cross-coupledcoefficients
aredirectly relatedto thedirect coefficientsdueto the fundamentalphysicsinvolved. Black10and
Muszynska11bothpoint out that therelationshipis due to the transformationfrom the coordinate
systemwhich rotateswith the fluid averagevelocity to the inertial system.This fluid average
velocity is usually slightly lessthanhalf therotor surfacespeed.This gives rise to the occurrence
of instability at near one-half rotor speed.A similar relationship is true for internal damping
except that the coordinatesystemrotatesat the rotor speed.The onset speedof instability is
determinedby examining the stability for variousspeedsand observingthe value of speedthat
causesthe rotor to be unstable.This canbe accomplishedusingRouth-Hurwitz techniquesor by
calculating the systemeigenvalues.For fluid beatingsand seals,it can be shown that the onset
speedis approximately equal to the systemresonancedivided by the ratio of averagefluid
velocity to rotor surfacespeed.Hence,for half synchronous(rotor speed)instability, the onset
speedis twice the first resonance.

The restoring,dissipative,and tangentialforcesdiscussedaboveare, in general,nonlinear
functions of displacement,velocity, andacceleration.Linearizing thesefunctions about an equi-
librium point asdiscussedby Gunter12resultsin the linear coefficientsusedin the stability anal-
ysis. The onset speedof instability determinedby the subsequentanalysisaddressesstability in
the small. Due to the nonlinearities,a systemmay beglobally stablewhen the linearizedanaly-
sis predicts an instability. A systemin this condition could exhibit a limit cycle instability.
Sometimesthe nonlinearity is in the form of a clearanceor deadbandin the restoringforce. This
can occur for examplewhen a sealrotor rubson the statoror whenrolling elementbeatingsare
mountedwith clearancebetweenthe outerraceand thesupport.The nonlinearrestoringforce can
be representedby a piecewiselinear function whosevalue is zerobefore the clearanceis passed
and whoseslope is equal to the "linear" stiffness of the bearingafter it is passed.If all other
force elementsare linear, theglobal onsetspeedof instability canbe determinedby assumingthe
value of the clearanceto be zero.13In this case, limit cycle instabilities can occur at speeds
below the global onsetspeed.The frequencyof the limit cycle is determinedby thenatureof the



tangentialforce. For a systemwith linear fluid forcesand clearancein the restoringforce, if the
onsetspeedof instability is twice the linear resonance,the limit cycle will be at a frequencyhalf
the rotor synchronousfrequency.This is due to the fluid averagevelocity being approximately
half the rotor surfacespeed.If the fluid averagetangentialvelocity is increasedor decreased,the
limit cycle frequencywill correspondinglyincreaseor decrease.

Several researchershave demonstratedlimit cycle instabilities using numerical simula-
tions. Control Dynamics13andDay14bothmodeleda single massrotor with linear direct damp-
ing, cross-coupledstiffness, and deadbandtype nonlinear direct stiffness. Control Dynamics
demonstratedcasesthat exhibited limit cycles and also casesthat did not. They also investi-
gated the stability in the small about anequilibrium point and concludedthat global stability is
not affected by deadband(clearance).Day also demonstratedcasesthat exhibited limit cycle
instabilities and cases that did not. He searched(unsuccessfully) for analytical expressions
defining the transition points betweencaseswith limit cycle instabilities and caseswhich only
exhibit synchronousresponseto unbalanceexcitation. Muszynska15numerically and experi-
mentally demonstratedlimit cycle instability in which more than one mode (resonance)was
unstable. As speed was increased, the first mode became unstable. As speed was further
increased, the second mode became unstable and the limit cycle of the first mode was
suppressed.

The understandingof subharmonicresponseand limit cycle instability as independent
phenomenais importantfor manyproblemsthatoccur in practice.However, of equal importance
is an understanding of the relationship betweeneach and the responseof machinery that is
simultaneouslysusceptibleto both. High performanceturbomachineryfalls into this category.In
fact, any rotating machinery that is operating above a critical speed,has nonlinear restoring
forces, hasstatic loads and/or misalignments,and has tangentialfluid forces can be susceptible
to both phenomenon.When thefrequencyof the limit cycle instability is closeto a fractionof rotor
speed(e.g., 1/2) it may beconfusedwith subharmonicresponse.In fact, if the resultsof Hayashi1
extendto morecomplexsystems,the limit cyclecanbecomeentrainedby subharmonicresponse.
A relationship between the two can be intuitively expected.In simple terms, a subharmonic
responseis causedby the (responseamplitude dependent)frequency of a nonlinear system's
resonancetuning itself to be at a fraction of the excitationfrequencyso that it will be reinforced.
Likewise, the limit cycle instability is due to the frequency of a nonlinear system'sresonance
tuning itself so that the (responseamplitude dependent)real part of the eigenvalue is zero,
yielding a sustainedtransient.

No other work is known to the author which exploresthe simultaneoussusceptibility to
thesetwo phenomena,or the relationshipbetweenthem in rotordynamicsystems.The previous
work on subharmonic responsegenerally neglectedself-excitation forces that could lead to
instability. The previouswork on instability did not include the properconditions to causesub-
harmonicresponse.The work by Control Dynamics13wascontrivedto representfluid forcesfor a
sealwith averagevelocity exactlyhalf therotor surfacevelocity. This resulted in a limit cycle at
exactlyhalf rotor synchronousfrequency.It is impossibleto differentiatebetweenthe two in this
case.

Hayashi1 examinesthe behaviorof a self-oscillatory second-ordersystem (van der Pol's
equationwith periodic forcing term) in the transitionbetweenalmost periodic oscillations (limit
cycle whose frequency is not a rational fraction of the excitation frequency) and subharmonic
entrainmentof theselimit cycles.He defines(in termsof the external force parameters)regions



in which entrainmentwill occur.A similar determinationis proposedaspart of this work; how-
ever, due to the nature of the nonlinearity to be studiedhere (deadbandin the radial restoring
force) a purely analyticaltreatmentbecomesintractable.A combinationof numericaland analyti-
cal approachesmust be used.In addition, sinceit will be desirableto investigatecomplex real-
istic systems,a comprehensivenumerical analysis tool is neededto model and simulate the
systems. Such a tool has been developedby the author in order to conduct the proposed
research.The tool consistsof a packageof computerprogramsto perform linear stability, linear
harmonic response,and nonlineartransientanalysesof generalturbomachinery.

The objective of this researchis threefold: (1) to characterizelimit cycle instability and
subharmonic entrainment and determine interrelationships between them, (2) to determine
regionsin parameterspacefor theexistenceof eachandtherebyestablishcriteria for their avoid-
ance,and (3) to attempt to provide guidancefor the interpretation of test data with regard to
impending divergent instabilities based on observation of subharmonic response or limit cycle

instability. The investigation begins using the nondimensionalized equations of a single mass

rotor with the appropriate characteristics. This study employs both analytical and numerical

techniques. The extension of the single mass model results to a complex, realistic system is
demonstrated by examining the HPFTP of the SSME. Available test data are examined and

linear analyses and nonlinear simulations performed.

II. MODEL FORMULATION

The initial model used in this study is a greatly simplified representation of a turbopump.

The model possesses only 2 DOF and, yet, it contains all the characteristics that are germane to
the phenomena being studied. A model which provides a more complex representation of a
turbopump is developed in appendix A. The simplified model can be obtained from the more

complex one, however, its development will be included here for clarity.

The simplified turbopump model consists of a single mass supported on symmetric

supports. The supports represent rolling element bearings or fluid film bearings and seals. They
are treated as linear spring and damper elements with the exception of including clearance or

deadband in the rolling element bearing force deflection relationship. The shaft flexibility would

also be included in the linear support spring. Fluid film beatings or seals require the inclusion of
cross-coupled stiffness and damping terms in order to characterize their influence on rotor

behavior. The model is excited by three different sources. Rotor mass unbalance provides excita-
tion at the shaft spin frequency (synchronous). Circumferential pressure distributions in a

turbopump are represented by fixed direction loads (side loads) at zero frequency. Random noise

is used to represent a variety of broadband random excitations that may exist in a turbopump and

to serve as a perturbation to investigate the behavior of the nonlinear system. Figure 1 provides
a schematic diagram of the system and defines the coordinate systems used in the derivation of
the equations of motion.
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Figure 1. Schematic of simplified rotor model.

The equations of motion are derived from a straightforward application of Newton's
A A

second law of motion. Application of this law along the i and j axes yields

may = Z Fy , (1)

maz = Z V_ , (2)

and along the _'r and _'t axes yields

mar = Z Fr , (3)

mat = _i, Ft • (4)

The component forces can be categorized as nonlinear support forces, linear support
forces, and excitation forces. The force-deflection curve for the nonlinear support force is shown

in figure 2. The displacement vector diagram is shown in figure 3a. The force in the direction of

radial displacement R can be written directly as

Ft. = {-kn (R-b') if R>60 if R<6 (5)

This radial force can be resolved into its components along the i" and J axes yielding (for R>a )

- ' (6)
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Nonlinear support force deflection curve.

(a) Displacement vectors.

Figure 3.
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(b) Force vectors.
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Vector diagrams for simplified rotor model.
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Thelinear supportforcescanbe written in radial andtangentialcomponentform as

Frt'er+Ft,'et = (-klR-cl_) "er+(-cRO +QR) "et .

Transforming these into cartesian components yields

A A

Fy,_+ Fzff = (-klY- cY- QZ ) i+ (-klZ-cZ+QY) j .

(7)

(8)

Rcg = (R +e cos (_-O))'er+e sin (f1-0 )e't

= (Y+e cos (fl)) +(Z+e sin (fl))j.

The angle fl is defined as the rotation angle of the rotor and can be written as

fl = or(t* )dt*dt= o9 (t) dt ,
(11)

where a is the angular acceleration and co is the angular velocity of the rotor. Differentiating

equation (10) twice with respect to time yields

d2 (Rcg) [/_-0 2R-/_2e (fl-O)]'er= cos (/3- 0)-fie sin
dt 2

+ (R0+2/_0-l_2e sin (fl-O)+fle cos (fl--0)]_'t

= [_;-]_2e cos (�3)-fie sin (/3)]i'+[Z-/_2e sin (�3)+fie cos (/3)])'. (12)

The appropriate expressions (cartesian or polar) from equations (5) through (12) can be
substituted into equations (1) and (2) or equations (3) and (4), respectively, yielding the equa-

tions of motion for the system. These equations in cartesian form are

m +ci" u(R-S) Y = met 2 cos (�3)+met sin (/3)+ Fsy+ Fny , (13)

mZ+cZ+ kl Z-QY+ kn (1- _R} U(R-_)Z = melt2 sin (fl)- mefl cos (/3) + Fsz+ Fnz , (14)

(10)

The fixed direction side loads and random noise forces are shown in figure 3b. The unbalance

excitation force is a natural consequence of the proper differentiation (twice) of the displacement
vector of the center of mass. This vector can be written in either cartesian or polar coordinates as

the sum of the displacement of the geometric center and the mass eccentricity vector.

(9)



andin polar form are

mJ_+cl_+ktR-mO2R+kn(R-_u(R-b ") = mel_2cos (fl-O)+me'fi sin (fl-0)

+(Fsy+Fny) cos (O)+(Fsz+Fnz) sin (0) , (15)

mRO+2mI_O+cRO-QR = me/) 2 sin (fl-O)-me[3 cos (fl-O)-(Fsy+Fny) sin (0)

+(Fsz+Fnz) cos (O) , (16)

where

1 if R>_
u(R-_= 0 ifR<t$ (17)

Noting from equation (1 1) that/_ = 09 and /_" = a and rearranging the linear and nonlinear

stiffness terms yields

mY+cY+k[1-,(1-u(R-t_) )-), _ u(R-t_)] Y+QZ= meto 2 cos (fl)

+meot sin (fl)+ Fsy+ Fny , (18)

mZ+c'Z+k[ I-y( 1-u(R-_))-y _ u(R-t$)] Z-QY= meto 2 sin (fl)

-mea cos (fl)+Fsz+Fnz, (19)

in cartesian coordinates and

mJ_ +cl_-mO 2R +k [l-y( 1-u(R-_))-y _ u(R-tS)] R = nero 2 cos (fl-O) +meot sin (fl-O)

+(Fsy+Fny) cos (O)+(Fsz+Fnz) sin (0) , (20)

mR'O+2mt_O+cRO-QR = meto 2 sin (fl-O)-meot cos (fl-O)

-(Fsy+Fny) sin (O)+(Fsz+Fnz) cos (0) , (21)

in polar coordinates where

k = kl+kn , (22)

and

),= k,,
k (23)
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The bracketedexpressionmultiplying k in equations (18) to (20) is arranged in a way that high-

lights the two regions of this nonlinear function. For R < t_, the third term within the brackets is

zero and the expression reduces to the linear form [1-),]. For R > t_, the second term is zero and

the expression reduces to [1-7'_1.

In order to generalize the results from this study, it is advantageous to reduce these

equations to a dimensionless form. This also has the benefit of reducing the number of parame-

ters in the problem. The first step is to divide equations (18) through (21) by m. When this is

performed, it is convenient to make the following definitions:

Jc= 
m ' (24)

c - 2(con
m - ' (25)

COn and (correspond to the undamped natural frequency and damping ratio for this system with

the deadband (6) and the cross-coupled stiffness (Q) both set to zero. Substituting these defini-
tions yields the cartesian equations

];+2(COnY+ CO2[1-7 (1-u(R-6))-), R_ u(R-tS) 1 Y+ QmZ= eCO2 cos (fl)

+ e a sin (fl) + Fsy Fny
m m ' (26)

Z+2(COnZ+ co2 [1-_ (1-u(R-t_))-)' _ u(R-6) 1Z -Q Y= eCO2 sin (fl)

-ea cos (fl)+ F__ +
m m ' (27)

and the polar equations

R+2_'COn/_-/92R +con2 [1-_t (1-u(R-t_))-7' _ u(R-tS)]R=eCO 2 cos (t-O)+ect sin (t-O)

+(Fsy+FnY}cos (O) + (Fsz+Fnz)sin (O) ,

RO+ 21_O+ 21_COnRO-Q R = eCO2 sin (fl-O) - eot cos (fl-O)
m

.
Next, time is normalized by the following substitutions:

(28)

(29)

(30)
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__d_ _ d_ ,-dt- ton_--_=toni , (31)

= to2_ ,, (32)

In these expressions, _ represents any variable which is being differentiated. Performing these

substitutions and dividing through each equation by to2 yields the cartesian equations

Y" +2_Y" +[1-?'(1-u(R-_) )-_' _R U(R-6) ] Y+qZ
Fsy Fny

= ep 2 cos (/3) + eft sin (/3) + -- +
k k (33)

Z" + 2_Z" +[1-), (1-u(R-S) )- y _ u(R-t_)] Z-qY = ep 2 sin (/3) - e//cos (13) + Fsz + Fnz ,
k k (34)

and the polar equations

R" +2(.R'-O'2R +[1-_'(1-u(R-S) )-_'_ u(R-S)I R = ep 2 cos (/3-O)+ela sin (fl-O)

+ cos (0)+ sin (0) , (35)

RO"+2R'O'+2(RIT-qR : ep 2 sin (/3-O)-ell cos (fl_O)_[Fsy+Fny.]sinll (0)
_ lk

+(Fsz+Fnz}cos (O)
k ' (36)

where

a _a
q-

into 2 k (37)

p = _(0_
to. ' (38)

and

//= --_
o)2 (39)

The angle/3 defined by equation (11) can be expressed in terms of z, p, and/l as follows:

ton ton = I't('¢*)d'c*d-_ = p(¥)d-f .
(40)

10



ables
The final step in the nondimensionalizationprocessis to define the following new vari-

Y = yt_, (41)

Z = zt_, (42)

R = rt_. (43)

Substituting equations (41) through (43) into equations (33) through (36) and dividing through

by t5 yields the cartesian equations

y"+2_y'+[1-_(1-u(r-a))-_u(r-1)]y+qz=ap 2 cos (fl)+ a/.t sin (fl)+gy+rly , (44)

z"+2_z'+[1-y(1-u(r-1))-_u(r-1)]z-qy=ap 2 sin (fl)-a/2 cos (fl) + gz+ rlz , (45)

and the polar equations

- _ u(r-1)] r =ap 2 cos (fl-O)+al2 sin (fl-0)r"+2_r'-O'2r+[ 1-)'(1-u(r-1)) 7

+ (gy+r/y) cos (0) + (gz+rh) sin (0) , (46)

rO" + 2r" O"+ 2_rO'-qr = ap 2 sin (fl-O) - all cos (fl-O) - (gy + Tly) sin (0)

where

+ (gz+ 0z) cos (0) , (47)

a= e
tS' (48)

_ Fsy

gY - "-_ ' (49)

gz = _, (50)

Fny

r/y = kS ' (51)

r/z = F__
k_ (52)

These equations contain a total of 10 dimensionless parameters. The number of parameters can

be reduced by making a few assumptions. First, since the system is symmetric, gz can be

assumed to be zero without loss of generality. Second, for the cases to be investigated here,

11



/z will be very small and can be neglected. Finally, fly and rlz are assumed to be uniform random

number sequences with the same range (-0-,_-). These assumptions yield a total of seven

dimensionless parameters: gy, a, p, _, q, _, and 7. A complete parametric study including all
seven parameters is not feasible; however, a subset of the most significant will be selected

based on the analyses discussed in the next section.

III. ANALYTICAL TREATMENT

The system model defined in the previous section can be analyzed in several ways. The

equations can be linearized about various equilibrium conditions in either the cartesian or polar

form. This approach is appropriate when examining limit cycle instability. The forced response

can be determined for the nonlinear system using a harmonic balance procedure. This is appro-

priate when examining subharmonic resonance. This method requires a combined analyti-

cal/numerical approach in order to determine a solution. Each of the linearizations and the har-

monic balance method yield certain insights into the characteristics of the system; however, no

single approach is adequate to describe the general case.

A. Linear Stability

The simplest approach to linearization is to neglect the deadband (6) by assuming it to be

zero. For this approach, equations (33) through (36) must be used since equations (44) through

(47) are based on nondimensionalizing equations (33) through (36) using 6 as the basis. As

discussed in reference 13, the stability determined in this manner is the global stability. Working
with the cartesian equations, the Routh criterion will be applied to the characteristic equation for

the system to determine the stability boundary. Applying the S = 0 assumption to equations (33)

through (34) yields

Y"+2(Y'+ Y+qZ = ep 2 cos (fl) + e/_ sin (fl) + Fsy-_ Fny
k k ' (53)

Z"+2(Z'+Z-qY = ep 2 sin (fl) - eft cos (fl) + Fsz + Fnz
k k (54)

Stability of the system is determined from the homogeneous solution to these equations.
Assuming solutions of the form

y= ye _.t , (55)

Z=Ze _.t , (56)

results in the following algebraic equation:

]/}q Y =l 0
_,2+2_'_+ 1

o

(57)
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This equation has a nontrivial solution only when the determinant of the matrix is zero.
Expanding this determinantyields the characteristicequationfor the system,

_4+4_.X3+(4_.2+2)A2+4_A+1+q2= 0 . (58)

Applying the Routh test to this polynomialyieldsthefollowing array:

/]4

A3

_o

1 4_a+2

4_" 4_"

4_'2+ 1 l+q 2

4_'(4_'2-q 2)

4_'2+ 1

1 +q2

1 +q2

For positive _, the only possible sign change in the first column occurs in the Al row. This term

will remain positive as long as

q--q-< 1 .

25 (59)

Therefore, equation (59) is the stability criterion for the system. In terms of the original system

parameters given in equations (18) through (21), this condition becomes

Q<_=On • (60)c

As discussed in section I, there is generally a relationship between Q and c (or q and 2_) that is

determined by the fluid dynamics of the particular system under consideration. This relationship

is generally a function of rotor speed. The form of this relationship that is assumed in this study

is discussed later.

It is of interest to determine the roots of the characteristic equation (equation (58)) in the

marginally stable condition/q= l/. Equation (58)can be expressed in factored form as
l

(X2+2_'X+l+jq) (_,2+2(A+l-jq) = 0 . (61)

The roots of this equation can be determined by applying the quadratic formula to each term

yielding

Ai = -_+_/ _2_ l +jq (62)

Substituting q = 2_" into equation (62) yields the four roots

A1,2 = +jl , (63)
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,_3,4= -2_'+jl (64)

Theserootscanbe relatedbackto unnormalizedtime yielding

,__,2= +Jcon , (65)

&3,4 = -2_con+jcon • (66)

It can be seen from comparing equations (59) through (66) that the frequency of the instability is

equal to COnand the instability occurs when the ratio _ is equal to COn• It will be shown next that

for the nonlinear system (6 _ 0) the frequency of the limit cycle that can occur when cQ--is less

than CO,,is equal to _ for certain cases.

B. Self-Excited Equilibrium

The approach taken next is to seek an equilibrium solution to the nonlinear, homogeneous

equations in polar form. The homogeneous form of equations (46) and (47) is In'st rewritten for
two cases, r _< 1 and r > I. For r _< 1 the result is

r"+ 2_'r'- 0 '2r+ ( 1- _r = 0 , (67)

rO"+2r'O'+2_rO'-qr = 0 . (68)

For r > 1 the _'t equation is identical to equation (68) and the _', equation is given by

r"+ 2_'r'- 0'2r+ r-y= 0 . (69)

For an equilibrium solution, the quantities r", r', and 0" are all zero. Eliminating these terms from

equation (68) yields the equation governing the equilibrium angular velocity

2_roO'o-qro = 0 ,

or expressed explicitly

(70)

This applies for all values of r. It should be noted that this is the ratio that governs the system

global stability as shown in the preceding paragraphs. For the case where r < 1, eliminating the

same quantities as before in equation (67) yields the equation governing the equilibrium radius

(1- y-0"2o) ro = 0 .
(72)

The only equilibrium solution to this equation is r = 0 which was expected since, for this range of

r, the system is linear. For the case where r > 1, the same quantities are eliminated from equa-
tion (69) yielding

14
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(1-0'o 2) ro-y= 0 , (73)

or explicitly

r 0 =
Y _ Y

1:o 2  74,
In order for a nonzero solution to exist for ro, ro must have a value greater than 1. Examination of

q

equation (74) shows that to meet this condition, 2-_ must be greater than "ll-y. This can be

recognized as the instability criterion for the linear system obtained for the case r < 1. In other
words, if the linear system defined for the case of the radial deflection being less than the dead-

band is stable, no equilibrium solution (other than ro = 0) is possible. If the linear system is

unstable, the equilibrium radius is governed by equation (74). This equilibrium motion represents

a limit cycle instability. It can also be seen from equation (74) that at the global stability
q

boundary, 2---_= 1, the solution is unbounded, as would be expected.

C. Mass Unbalance Equilibrium

The self-excited equilibrium determined in the above paragraph gives insight into the

behavior of the system; however, it does not represent a very practical case since it is completely
unforced. Another case of interest is the equilibrium solution to the system when excited only by
mass unbalance. The solution is assumed to be harmonic with frequency equal to the excitation

frequency (synchronous response), i.e., 0'o = p.The equilibrium assumptions are applied to

equations (46) and (47) (assuming/1 = 0). The result for r < 1 is

(1-y-p 2) ro = ap 2 cos (t-O) (75)

(2_'p-q) ro = ap 2 sin (t-O) . (76)

For r > 1 the _, equation is identical to equation (76) and the _r equation is

(1-p 2) ro- y= ap 2 cos (t-O) . (77)

Equations (75) and (76) can be solved simultaneously for ro yielding

ap 2
r0 =

5/( 1 - __p2)2 + (2 _'p--q)2 (78)

for r < 1. Equations (77) and (76) can be solved simultaneously for ro yielding

r0 -
( 1 _p2 ) y + _/a 2p 4( 1_p2)2 + a 2p4(2 _-p _q)2_ y2 (2 _'p _q)2

(1-p2)2+(2(p-q) 2 (79)
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for r > 1. Equation (78) is valid for all values of the parameters for which the linear system

defined for the case of r _< 1 is stable. Three conditions must be met for equation (79) to be valid.
First, the quantity under the radical must be greater than zero since r must be real valued.

Second, one of the differential equations from which equation (79) was derived (equation (69)) is

only valid for r > 1; therefore, the predicted value of r must be greater than 1. Third, the equilib-
rium must be stable (determined in a following section).

D. Side-Force Equilibrium

A third equilibrium point of interest is the case with fixed direction side forces and no

unbalance. The solution is assumed to be static, i.e., all time derivatives are equal to zero.

Applying these assumptions to equations (46) and (47) (and recalling that gz was assumed to be
zero in section II) yields

(1-y)ro = gy cos (0o) , (80)

qro = gy sin (0o) , (81)

for r < 1. For r > 1, the _'t equation is identical to equation (81) and the earequation is

r0-y= gy COS (00) • (82)

Solving equations (80) and (81) for the case of r < 1 yields

gy
Fo--

_/(1-7')2 +q 2 (83)

Oo = tan-1 (l_q-_-y} •
(84)

This solution can easily be expressed in terms of cartesian coordinates as

gy( 1- y)
yo-

(1-y)2+q 2 (85)

Z0--
gyq

(1-)')2 +q 2 (86)

For the case of r > 1, equations (81) and (82) yield the following quadratic equation in r o,

2 2 2 2
(l+q)ro-2yro+ ?, -gy = 0 . (87)

The solution of this equation is found to be
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ro _

y + 4 g2( l +qZ)-q2y 2

l+q 2 (88)

It can be shown that for all cases where ro predicted by equation (83) is greater than 1, the

quantity under the radical in equation (88) is greater than zero. The corresponding solution for 0o
is

0o=tan-_tqr°l.
_ro- y! (89)

Equations (88) and (89) can be transformed into cartesian coordinates yielding

Yo = ro cos (0o) , (90)

zo = ro sin (0o) . (91)

E. Linearization About Self-Excited Equilibrium

Equilibrium solutions have now been determined for three specific cases of interest.

These cases are the self-excited system (equations (71) and (74)), the synchronous response

to unbalance excitation (equations (78) and (79)), and the static response to side forces

(equations (83) through (91)). Linearizations of the equations of motion can be determined for

each of these cases. The polar form of the equations will be used for the first two cases and the
cartesian form for the last.

Linearization of the equations of motion is only necessary for r > 1 since the system is

already linear for r < 1. The linearized form of the equations of motion for the first two cases can

be developed together. The appropriate excitation terms can be dropped in order to obtain the

equations for the self-excited case. Equations (46) and (47) are used with only the unbalance
excitation forces retained. Also, as in the determination of the equilibrium solution, the angular

acceleration p is assumed to be zero. The resulting equations are

r"+2(r'-O'2r+r-y= ap 2 cos (t-O) , (92)

rO" + 2r'O" +2(rO'-qr = ap 2 sin (t-O) . (93)

The linear equations will be obtained by examining perturbations about the equilibrium solutions.

This is achieved by making the following substitutions into equations (92) and (93):

r = ro+? , (94)

O' = 0'o+ O' . (95)
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The variables ? and 0-' are the perturbation variables. The linearization is accomplished by

making the substitutions and neglecting terms of second order or greater in the perturbation
variables.

For the self-excited case the resulting equations are

?"+2(?%( 1-0"2)?-20'oro-0 ' = ro( O "2-1 )+ y , (96)

roO" + 20"o?" +(2(O'o-q)?+ 2(roO" = (q-2(O'o)ro • (97)

The equilibrium conditions are obtained by setting the perturbation terms to zero. The results are

identical to those obtained previously (equations (71) and (74)). The stability of this equilibrium

is determined from the homogeneous solution of equations (96) and (97). The characteristic

equation for this system (with the substitution 0'o = q/2() can be written as

,_3 +4(/_2 +(16(4 + 4(2 +3q2),_,+(4(_q2 ) = 0 .
4( 2 (98)

It can be shown that the Routh test applied to equation (98) yields the same stability criterion as

the global stability criterion given in equation (59).

F. Linearization About Mass Unbalance Equilibrium

For the synchronous response case, the linearized equations are (with the substitution
0"o = P)

?"+2_'_'+(1-p2)?-2pro-O" = ro(p2-1 )+ y +ap 2 cos (r-o) , (99)

roO" + 2p?' + (2(p-q)? + 2(roO" = (q-2_p)ro+ap 2 sin (15-0) . (100)

Before proceeding with the perturbation analysis, the sine and cosine terms must be expressed

in terms of the perturbation variables. For the constant speed condition under consideration, it

can be seen from equation (40) that 15 = pz+15o. 0 can be written in terms of the perturbation
variable as

; fo0 = (0'o+0 ')d¥= pz+Oo+ O'd¥= pz+Oo+O .

(101)

The resulting argument of the sine and cosine terms in equations (99) and (100) is 15o-0o-0.

The equilibrium solution for ro obtained by setting the perturbation terms to zero is identical to

that given in equation (79). The equilibrium solution for the phase angle fit- 0o can be expressed
implicitly by

18



cos (Po-eo)=
(1-p2)ro- 7

9

ap2 (102)

sin (flo-Oo) - (2,p-q)ro

ap 2 (103)

The terms cos (flo-Oo-O) and sin (flo-Oo-O) can be expanded using elementary trigonometric
addition identities into the form

cos (flo-Oo-O ) = cos (flo-0o)+sin (flo-Oo)O . (104)

sin (flo-Oo-O) = sin (flo-0o)-cos (flo-0o)0 • (105)

The small angle assumptions cos (0--)= land sin (0--)= 0 have already been incorporated into

these equations. Equations (102) and (103) are now substituted into equations (104) and (105).

The resulting expressions are substituted into equations (99) and (100). Retaining only those

terms involving the perturbation variables yields

?'+2,?'+( 1-p2)?-2proO'-(2,p-q)roO = 0 . (106)

roO"+2p_'+ (2,p-q)?+ 2,roO'+ (( 1-p2)ro- y) 0 = 0 . (107)

The characteristic equation which results from these homogeneous equations is

&4 + 4'_,3 +(4,2+ 2,02+ 2-_-0"0)&2 + 2[2,(l-p2) - '£+ 2p(2,p-q)]&

+(2,p-q)Z+(1-p2)(1-p 2 Y] 0 (108)

This equation involves the equilibrium solution ro and, hence, a stability criterion cannot be easily

expressed analytically. The stability of this equilibrium will be determined numerically for various

values of the system parameters and presented in section IV.

G. Linearization About Side-Force Equilibrium

The side-force equilibrium case will now be treated using the cartesian form of the equa-

tions of motion. The equations of motion (equations (44) and (45)) with only side-force excita-
tion can be written as

y" +2,y" +qz-gy=-[1 _)y ,
(109)

(110)
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where the nonlinear restoring force hasbeen isolated on the right-hand side and r has been

expressed explicitly in terms of y and z. The right-hand sides of equations (109) and (110) can

be linearized using their Taylor's series expansions about the equilibrium points Yo, zo. Retaining
only the first-order terms and rearranging the equations results in the homogeneous equations

Y Y____Y___ [ yozor4r__y{_+Z2o+(y2o+Z_){]y + _(y2_+Z2o)3 ] qz=0, (111)

g'+2_'g'+(1 Y4;yo +zo
yozo7 ly-qy=0

-- ---- 3 " --3'

(112)

The equilibrium points (given in equations (90) and (91)) were derived for the case where gz = O.
In examining equations (111) and (112), it would be convenient to be able to consider an equilib-

rium point on one of the coordinate axes, such as zo = 0. This can be accomplished without loss of

generality by considering the load to be applied at an angle of- 0o with respect to the y axis

where 0o is given by equation (89). In this condition, Yo will be equal to ro as defined by equation
(88) and zo will be zero. Since the system is symmetric, the stability of this equilibrium point will

be identical to the original point. For this case, equations (111) and (112) become

y"+2(y'+y+q_ = 0 , (113)

z"+2_'z'+{1-Y) g-q_=0 " (114)

The corresponding characteristic equation is

Y +q2= 0 ._4 +4(_3 +(2-_0 + 4(2)_2 +2_'(2-_0)/I,+ 1-_0 (115)

Application of the Routh test to this equation yields the following stability criterion:

q--- _/_ Y (8_ro I2_< 1+ m Y 12ro
t

(116)

Since this relation involves the equilibrium solution ro. A general conclusion about the stability

cannot be drawn. However, for cases where the quantity within the parentheses is positive, this

requirement is less restrictive than the global stability criterion (equation (59)). This implies that

over some range, the addition of side forces to a system with deadband in the restoring force has

a stabilizing influence (in the small). More general results will be presented in section IV by

evaluating the roots for various values of the system parameters.

H. Subharmonic Response Analysis

The stability of the system model has been examined for various equilibrium conditions.

The solutions obtained provide insight into the characteristics of the limit cycle instability. An

understanding of the characteristics of the subharmonic response will now be sought using a
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harmonicbalancemethod.The dimensionlesscartesianequations(equations(44) and (45)) will
beused.The assumptionsmadepreviously(gz= 0 and_ = 0) will be madehere,andthe random
noiseexcitation (r/y and r/z)will be neglected.

The nonlinear restoringforcesin equations(44) and (45) canbe rewritten to facilitate the
developmentof theharmonicbalanceequations.Themodifiedequationsare

y"+2_'y '+ ( 1 - y)y +qz+fy(y,z) = ap 2 cos (pz) +gy , (117)

z"+ 2(z'+(1-y)z-qy+fz(y,z) = ap 2 sin (p_') , (118)

where

if _y2+z2 > 1

if "_'y2+z2 _< 1

(119)

and

fz(y,z) =

,(1
0 if '_y2+Z2 _< 1

(120)

The method used here is essentially the same as that used by Noah. 16 This investigation will be

limited to subharmonics of order 2 (one-half synchronous). The solutions for y and z are assumed

to be superpositions of a fundamental sinusoidal component and N of its harmonics. The funda-
mental in this case is the one-half synchronous subharmonic. These solutions are given by

N

y = ayo+ _._(aynCOS(n_)-bynsin 19
n=l (121)

N

Z=azo+ _._ (az_ cos (n _ 't')- bz_ sin (n _ z')) .
n=l (122)

The nonlinear restoring forces fy and fz are approximated by similar harmonic expansions given

by

N

fy=Cyo+ _a (Cy cos(n_j-dy sin(n_)) ,
n=l (123)

fz=Czo + _ (Cz_COs(nP't)-dz_sin( np _:)) .
n=l (124)
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Substituting equations (121) through (124) into equations(117) and (118) and performing a
harmonicbalance yields a set of 4N+2 linear equations in 8N+4 unknowns (ay o, azo, Cyo, Czo, ayi,

azi, by i , bzi, cy i, Cz_, dy i , dzi ..... i = 1,N). The additional 4N+2 equations needed for a solution are

determined from the relationship between fy and fz and the solutions y and z given by equations
(119) and (120). These equations can be solved using an iterative numerical procedure. The

results will provide insight into the effects of the various system parameters on the subharmonic

response.

Analytical solutions have been developed for the model formulated in section II. These

solutions are expressed in terms of the model parameters. In section IV, numerical values (or

ranges of values) will be specified to define the model. The numerical values of the analytical

solutions will then be presented for various values of the model variables.

IV. MODEL DEFINITION AND ANALYSIS RESULTS

A simplified single mass model of a turbopump rotor has been formulated in section II.
Analytical expressions for various equilibria and lineafized stability conditions were obtained in

section III. In this section, numerical values and ranges of values will be specified in order to

define the model. Using these values, numerical results will be presented for the solutions

developed in section III.

A. Model Definition

The model consists of seven dimensionless parameters (gy, a, p, _', q, y, and 0-"). These
parameters are defined at the end of section II. The values to be chosen for these parameters will

be based in part on the author's experience and in part on the analytical expressions obtained in

section III. Initially, the random noise parameter _ will be neglected. This assumption was made

in the developments of section III. Parametric studies of the effects of _ will be performed later

using simulations.

The nonlinear stiffness to total stiffness ratio (79 is restricted by its definition to range

from zero to one. Typically, in rocket engine turbomachinery, rolling element bearings provide a

significant, if not the majority, of the rotor support stiffness. These bearings frequently are

mounted with clearance between the outer race and the bearing support. This clearance provides
the deadband _ discussed in section II. A value for y of 0.75 has been selected to represent a

typical rotor support situation where clearance mounted beatings provide a majority of the rotor

support stiffness.

The dimensionless side load gy and dimensionless unbalance a were normalized by the

deadband t_. Hence, they should have values on the order of unity to represent cases where the

rotor is operating in a highly nonlinear fashion. Values much greater than unity will tend to

obscure the deadband. Values much less will cause operation in the linear range of the function

defining the rotor support (equation (5)). Nominal values of 1.0 and 0.5 have been assigned to gy
and a, respectively.

The shaft angular velocity p is a primary parameter in any investigation of rotating

machinery, and a wide variety of values will be examined. However, the upper limit of interest is

the maximum of the global onset speed, the unbalance stability threshold, and the side-force
stability threshold.
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As discussed in sections I and III, the dimensionless cross-coupled stiffness q is

generally related to the fluid damping 2 5 . This relationship is due to the fluid average tangential

velocity being a function of rotor surface velocity. If a fixed ratio is assumed, q can be expressed
in terms of this ratio, the rotor speed, and the damping. This ratio is typically slightly less than

one half. If the configuration is such that the fluid is entering the fluid seal or bearing with a

tangential velocity greater than the rotor surface speed, the ratio can be greater than one half.

Designating this ratio as or, the cross-coupled stiffness can be expressed as

q = 2_po". (125)

Since a primary objective of this study is to examine systems which are simultaneously
susceptible to limit cycle instability (governed by o') and subharmonic resonance, the value of o"
has been selected to be 0.48 (close to but slightly less than one half). This ratio has frequently

been observed in SSME test data. Values greater than one half will also be examined. The

damping ratio ( is typically low in rocket engine turbomachinery. A nominal value of 0.10 has

been assigned to this study. This value is representative of the damping in the HPFTP of the

SSME.

Nominal values have been assigned for all parameters of the model. These values are

summarized in table 1. The results of the analyses of section III will be presented for these

nominal values.

Table 1. Nominal model parameters.

Parameter Value

gu 1.0

a 0.5

p 0.-4.0

( 0.1

a 0.48

7 0.75

B. Analysis Results

The first result developed in section III was the stability criterion for the case of zero

deadband (equation (59)). Substituting equation (125) into equation (59) results in the criterion

p < 1 = __1__ = 2.08 .
cr 0.48 (126)

As discussed in section III, this is the global onset speed of instability for the system. It will be

designated by Pgi. The roots of the characteristic equation (equation (58)) are shown in figure 4
for various values of _ and o" as p is varied from 0.0 to 4.0. The plot for variations in (shows the

roots in the complex plane. As o" is varied, the roots follow identical loci except that the speed

correspondence is different. For this reason, the critical damping ratio is displayed for the roots

as o'is varied. As expected, the imaginary axis crossing is determined by equation (126).
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The next result developed was for the equilibrium solution to the homogeneous polar

equations. The results showed the possibility of a limit cycle instability with a frequency given by

equation (71) and radius given by equation (74). Substituting equation (125) into these

equations and applying nominal values for the parameters yields

0'o = crp = 0.48p , (127)

and

_0 _

0.75

(1-0.482 P z ) (128)

As discussed in section III, this equation is valid only when ro is greater than 1. This will be true

whenever q/2_ is greater than lf]-Z--_,. Expressing this in terms of the parameter values yields

_tl-Y _ 0._/-6_- = 1.04 .
p_>

cr 0.48 (129)

Since this is the initial value for which a limit cycle is possible, it will be designated by Ptc.

Equation (128) is plotted in figures 5 and 6 for a range of p from zero to the global stability limit.

Figure 5 presents the solution for various values of )' and figure 6 for various values of er. The

primary effect of each parameter is to change the range of values of p over which the

homogeneous equilibrium is possible. ?' does not alter the upper limit (Pgi) but it has a strong

effect on the lower limit (Ptc). For _, = 0 (the linear problem), no homogeneous equilibrium is

possible. For )' = 1, the equilibrium is possible for all values of p from zero to the global onset

speed of instability, cr affects the lower and the upper limit since both are inversely proportional
to or. As would be expected from examination of equation (128), the amplitudes increase

dramatically as the value of p approaches the upper limit.

The equilibrium solutions for the unbalance mass excitation case are given by equations

(78) and (79) for values of ro < 1 and ro > 1, respectively. The equations are subject to the

validity conditions discussed in section III. Stability of the equilibrium is governed by the roots of

the characteristic equation (equation (108)). The solutions are plotted in figures 7 through 10.

The absence of a portion of a curve indicates that the solution is not valid or is unstable in that

region. The stability condition for the linear case of ro < 1 (Ptc) and the global stability condition

(Pgi) are indicated on the figures. The stability threshold for the equilibrium solution is also
indicated. This value was determined by examining the real parts of the roots of equation (108)

as the parameters were varied. This threshold is designated by Pue.

Figures 7 through 10 present the solutions for various values of )', a, _', and or,

respectively. These curves contain regions where dual solutions are possible for the same value

of all parameters. One solution is for ro < 1 and the other for ro > 1. There are also regions where

no mass unbalance equilibrium solutions are possible. These are the regions where the

equilibrium would reside in the linear range ro < 1, but the system is unstable in this range

(P > Ptc), or the solution would reside in the range ro > 1 and the solution is unstable in that
range (p > Pue). In these ranges, some combination of the homogeneous limit cycle solution given

in figures 5 and 6 and the unbalance might be expected. _has a strong influence on the limits of

these ranges. As ), is increased, both Ptc and Pue (when ro > 1) decrease. It also causes an
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effective lowering of the system resonance frequency. This would be expected since y softens the

support in a nonlinear way. The unbalance parameter a does not affect the limits Ptc or Pgi.
However, for the larger values, the solution never drops below 1.0 and, therefore, it exists for all

values of p up the equilibrium stability threshold Pue • _ has little effect on the speed ranges

where unbalance equilibrium is impossible. Its primary effect is on the amplitude of the solution

at resonance (as with linear systems), tr directly affects both Plc and the global stability limit Pgi

(each is inversely proportional to tr). It affects the equilibrium solution stability threshold pue in a

manner similar to its effect on Pgi.

The equilibrium solutions for the fixed-direction side forces are given by equations (83)

through (86) for ro <- 1.0 and equations (88) through (91) for ro > 1.0. These equations are in

terms of q which should be replaced with its definition given by equation (125). The stability of

the solution for ro > 1.0 is determined by equation (116) or direct evaluation of the roots of

equation (115). Again, the definition of q given by equation (125) should be substituted into

these equations. The roots of equation (115) are plotted in figure 11 for various values of _"and tr

and in figure 12 for various values of yand gy. In both figures, p is varied from 0.0 to 4.0. As in

figure 4, the roots for variations in tr and gy are presented as critical damping ratios. The results
for all cases have certain similar characteristics. For p = 0.0, the y and z axis equations are

uncoupled due to the special form assumed for q (equation (125)). The roots occur in complex

conjugate pairs with all real parts equal to (. One pair of roots has an imaginary part equal to

"fl.0-( 2 (corresponding to equation (113)) and the other has an imaginary part equal to

_/1.0-)'lro-( 2 (corresponding to equation (114)). As p increases from zero, the equations

become coupled and the roots approach each other along the line defined by the real part equal to

(. When the roots meet, they branch symmetrically away from the vertical line given by the real

part equal to (. One branch becomes more stable while the other moves toward the right half

plane.

The parameter ( affects the roots primarily in two ways. First, it defines the real part of

the roots for values of p prior to the intersection of the roots. Second, since q is a linear function

of (, increasing it causes the root intersection and imaginary axis crossing to occur for lower

values of p. Increasing cr has a similar effect without shifting the value of the real parts for small

p. For some small values of nr, the roots never intersect for the range of p examined here. )'

affects the imaginary part of the lower root for p = 0. For smaller y, this root moves closer to the

higher root. For y= 0 (the linear system), the roots are identical. Since the roots are closer
together their intersection and the imaginary axis crossing occurs for smaller values of p. The

effect of gy is similar to that of )', only inverted. This would be expected from examination of

equation (115).),and ro always appear as _o in this equation and, from equation (88), it can be

seen that ro is almost a linear function of gy. For large values of gy or small values of 7, equation
(116) indicates that the side force equilibrium is less stable than the global stability of the linear

system. However, for increasing values of gy, the stability condition approaches the global

stability condition. This result was previously shown by Control Dynamics. 12

The subharmonic resonance solution was developed in section Ill using a harmonic

balance procedure. This procedure was implemented using the Newton-Raphson method as

presented by Noah. 16 The primary interest here is in the values of the subharmonic components

of the series solution (ayl, byl, azl, bzl). The magnitudes of the y axis components (4a21+b2,)

are plotted in figures 13 through 17 for various values of gy, a, ),, (, and tr, respectively. The z

axis components behave similarly. The absence of a portion of a curve in these figures indicates a
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failure to converge to a solution. This failure most likely indicates that the assumed form of the

solution does not represent a solution that can actually exist for the given set of parameters. On
the other hand, the achievement of convergence for another set of parameters does not guarantee

that the solution will take the prescribed form, only that it is possible. This is important to note

when examining results from simulations which exhibit nonfractional subsynchronous response

(e.g., limit cycle instability), since these motions cannot be represented by the subharmonic
solution form.

The effect of gy on the subharmonic response can be seen from figure 13. As gy is
increased, the range of occurrence of the subharmonic narrows. The upper limit moves upward

slightly. The amplitude of the response is not significantly affected at a given value of p as long
as the value is within the range of occurrence. Within the range of occurrence of the subharmonic,

the response increases with increasing p.

The unbalance parameter a affects the subharmonic response in much the same way as gy.

This can be seen in figure 14. One difference to note is that the range of occurrence initially

broadens and subsequently narrows as a is increased. Also, the amplitude at a given value of p

varies a little more with a than with gy.

The most significant influence comes from the parameter 7. This is not surprising since

this parameter gives a measure of the degree of nonlinearity in the system. The effects of 7 can

be seen in figure 15. For 7= 0, no subharmonic is developed since the system is linear. As 7

increases to 1 (its maximum), the amplitude and the range of occurrence of the subharmonic

response increase. The upper limit of the range drops somewhat.
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The damping parameter _ has much less influence than the parameters discussed
previously. The primary effect is to increasethe upper limit of the range of occurrenceof the
subharmonic.This effect is shownin figure 16. Since _"has little effect on the amplitudes,the
curves for eachsuccessivevalue of _"have beenshifted vertically for clarity. The cross-coupled
stiffness parameter o" also primarily affects the upper limit. Figure 17 shows its effect on the

subharmonic response. These curves are shifted as in figure 16. For very small values, no

subharmonic response occurs. After a certain value is exceeded, the range begins to broaden.

Both the lower limit and the upper limit are affected. The largest change comes as o" approaches

a value of 0.5. As this value is approached, the upper limit of the range of occurrence and the

amplitude of the response at the upper limit increase dramatically. This is due to the coalescence

of the limit cycle instability frequency with the subharmonic response frequency. The upper limit

and the amplitude decrease as o" increases beyond 0.5. These effects are indications of the

inherent relationship between limit cycle instability and subharmonic response that was

postulated to exist in section I.

C. Preliminary Observations

The results developed in section III and presented in this section apply for certain

restricted, sometimes nonrealistic conditions. For example, the homogeneous equilibrium

solution is of little value for predicting actual system response since any real system will

possess some amount of excitation. Similar statements could be made about the other solutions

developed. However, each yields some insight into the characteristics of the behavior of the

system and some general conclusions can be drawn. The conclusions drawn for the restricted

cases can be extended to apply for cases where one parameter is dominant. For example, if the

unbalance is much larger than the side force, the characteristics observed for the unbalance

excitation case would be expected to hold. When this is not the case, other conclusions can be
drawn based on the results of the restricted cases.

The homogeneous solution to the polar equations yielded a range of occurrence, a

frequency, and an amplitude for the limit cycle instability. The analysis of the unbalance response

equilibrium determined the possibility of a solution in regions where the limit cycle equilibrium is

also possible. The stability analysis of the side-force equilibrium demonstrated that this

excitation increased the stability of the system (in the small). It is reasonable to expect that both

of these effects would tend to reduce the range of occurrence of the limit cycle. The limit cycle
instability is induced by the circulatory force represented by the cross-coupled stiffness. The

nature of this force for this system is expressed by the relationship q = 2_pcr. The value of o"

determines the frequency of the limit cycle in the homogeneous case. Since the fundamental

driving mechanism for the instability is the same even when excitation is present, it is expected

that the frequency of a limit cycle under these conditions would remain close to that predicted for

the homogeneous case. The amplitudes predicted for the homogeneous case would most likely be
significantly changed by the addition of the unbalance and side-force excitations. However, the

general trend of increasing amplitude as the global stability limit is approached would be
expected to hold.

The unbalance response equilibrium solution demonstrated certain regions in which a

synchronous sinusoidal response could not exist. In these regions, a combination of synchronous

response and either limit-cycle instability or subharmonic response might be expected. The

addition of a side-force excitation would alter the specific range of occurrence and amplitudes of
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this behavior; however, for somevaluesof side force this behavior might still be expectedto
occur.The stabilizing capacityof the sideforcehasalreadybeendiscussed.The side force hasan
additionaleffect of makingthesystembehavelike a linearsystem.This is true for relatively large
valuesof side force (comparedto deadbandandunbalance).

The subharmonic responseanalysis already includes the combination of unbalance
excitation and side-force excitation. However, the form of solution assumedin the procedure
doesnot allow for the occurrenceof limit-cycle instability. The rangesof possiblesubharmonic
responseshould be valid; however, the existenceof this form of solution is not guaranteed.
Limit-cycle instability may also occur in regionswheresubharmonicresponseis possible.The
results still show the effects that various model parameterswill have on the subharmonicif it
occurs. This is typical of certain types of nonlinear systems where multiple solutions are
possible. In fact, for a given set of parameters,the initial conditions may determine which
solution is obtained.Other perturbations,suchasthe randomnoise,may also play a strong part
in the determination.

The resultspresentedin this section provide generalcharacteristicsof the responsesof
the nonlinearrotor system.They provide insightsinto theeffects that the variousparameterswill
haveandgive direction for thesimulationstudiesto bepresentedin the next section.The various
behaviors postulated in this section for the general system will be investigated using
simulations.

V. SIMULATION RESULTS FOR SIMPLIFIED MODEL

Numerical results were presented in the previous section for the analytical expressions

developed in section III. These results consisted of equilibrium response amplitudes, stability

conditions, and subharmonic response amplitudes. The analyses were developed for specific
excitation cases (homogeneous, unbalance, and side force) and a specific assumed form of

solution (subharmonic response). None of the analyses are fully applicable for a system under

general excitation and one whose solution form is not known a priori to be a superposition of

subharmonics. However, some general conclusions were drawn for the system in the previous

section for both the restricted cases for which the analyses apply and for the general case. In this

section, simulation will be used to demonstrate the validity of the results presented and the
conclusions drawn in the previous section. In addition, results which can only be determined

through simulation will be presented. These results were obtained using the general turbopump
model developed in appendix A. The numerical integration method used for the simulation
solution is discussed in this appendix.

A. Demonstrations of Equilibria and Stability of Restricted Cases

The first result developed was the stability condition for the zero deadband case. For

nominal parameters, this condition was shown to be p < 2.08. This is illustrated (fig. 18) by
slowly ramping the simulation through this value and observing the divergent growth of the
response beyond this value of p. A very low level of random noise was used to initiate the

instability. Fast Fourier transform (FFT) analysis of the response (fig. 19) shows that the

frequency of the instability is equal to the normalized natural frequency of the system
(1 radian/second).
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The limit-cycle equilibrium radius given by equation (128) is shown in figure 20 for
nominal valuesof all parameters.Simulationresultsareshownon this plot for certain valuesof
p. FFT analyses for the various values of p show that the frequency of the limit cycle is 0.48p as
predicted by equation (121). These spectra are shown in figure 21.
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Figure 20. Homogeneous equilibrium solution amplitude as p is varied. All parameters are

nominal. Solid line represents analytical solution, circles represent simulation results.
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The massunbalanceequilibrium radius given by equations(78) and (79) is shown in
figure 22 for nominal valuesof all parameters.Simulation resultsare shown for a ramp up to
P =Plc. Above this value, the mass unbalance equilibrium results are not valid since ro < 1 and
the solution is unstable. Simulation results are also presented for the ramp down from this speed,

illustrating the multivalued solution which exists in a small range near the resonance. In order to

explore the stability threshold of the unbalance equilibrium (Pue), a larger unbalance case was

simulated. This was necessary to generate an equilibrium solution whose value exceeds 1.0.

Simulation results are presented in figure 23 for the model operating at a steady speed (/9 = 1.7)

just below the stability threshold (Pue = 1.72) and then ramping to and holding at a speed

(/9 = 1.73) just above the threshold. A very low level of noise excitation (_ = 0.0001) was used

to perturb the equilibrium. At the lower speed, the equilibrium is maintained. At the higher speed,

the amplitude appears to diverge and then limits at a higher level than the equilibrium. FFT

analysis of the response (fig. 24) shows that the limit cycle instability has emerged along with

the mass unbalance response. This result shows that at speeds above this stability threshold

the unbalance response equilibrium cannot be maintained, and a combination of unbalance

response and limit-cycle instability results; however, it does not show the converse, i.e., it does
not show that below this threshold the combination response cannot be maintained. It only

shows that below the threshold the unbalance equilibrium without the limit-cycle instability is

possible.

Figure 22. Mass unbalance equilibrium solution amplitude as p is varied. All parameters

nominal. Solid line represents simulation solution, X symbols represent analytical results.

The stability analysis of the side-force equilibrium showed that this equilibrium was

stable for speeds beyond the global stability threshold. This is demonstrated for a nominal case

(with no unbalance) in figure 25. This case has a low level of noise excitation (77 = 0.001) to

perturb the system. The predicted stability threshold for this case (equation (116)) is p = 3.0.

The system clearly remains stable for speeds below this threshold and diverges beyond it. Since

the analysis only addressed stability in the small, it is of interest to determine how sensitive the
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gy = 1.0. Predicted stability threshold is p = 3.

stability is to perturbation. This was examined by simulating the system at a constant speed of

19 = 2.7 and increasing the amplitude of the noise perturbation {_-). Results from this simulation

are shown in figure 26 and show that a value of r/--- 0.47 was required to perturb the system

beyond the range of stability. This is not an exact value due to the random nature of the noise

excitation and the fact that the value was steadily increasing. An even more interesting result is

shown in figure 27. This figure presents two cases, one in which the noise is only applied along

the y axis and the other only along the z axis. The amplitude is increased as before. For the y-

axis perturbation, the system remains stable for all values of r/y up to 1.0. However, the z-axis

perturbation behaves just like the dual-axis perturbation. The system becomes unstable above

r/z = 0.4. In hindsight, this should not be a surprising result. The fundamental driving force for the

instability is a tangential force. The side-force equilibrium point is primarily along the y axis and,

hence, a z-axis perturbation would impart a tangential velocity to the rotor. One might
hypothesize then that an unbalance excitation superimposed on the side-force excitation might

rather easily perturb the system beyond its range of stability. This might be expected since the

unbalance provides a large, regularly occurring tangential perturbation to the rotor. This will be
explored in a later section.

The analytical results presented in section IV showed that the stability threshold for the

side-force equilibrium increases as the magnitude of the side force decreases. This is true as

long as the side force is sufficient to cause the displacement to exceed the deadband (ro > 1.0).

This can be understood by realizing that the greatest asymmetry occurs in the linearized

stiffness coefficients when the deflection is the smallest. Gunter, 12 among others, has shown the

stabilizing capacity of asymmetry. However, due to the smaller magnitude of the side force and
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the deflection for this case,this highly stable(in the small) equilibrium might be expectedto be
more sensitiveto perturbationthan a morehighly loadedcase.This is shown to be the casein
figure 28.The result is for acaseof sideforcegr = 0.5 instead of 1.0 as was the case in figure 26.

The side-force equilibrium stability threshold for this case is p ---4.25. All other conditions are

the same and the system becomes unstable when _--- 0.25. For increasing side force, although

the sensitivity of the stability to disturbance will decrease somewhat, the stability threshold will
also decrease and, in the limit, will approach the global stability threshold (Pgi).
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Figure 28. Sensitivity of side-force equilibrium stability to perturbation.

p = 2.7, gy = 0.5, 0y = /Tz = 77.

Subharmonic response harmonic balance results were presented in section IV for nominal

values of the model parameters and several variations of each parameter. These results give the

amplitudes of a subharmonic if it occurs, but they do not address any perturbations or initial

conditions which may be required to initiate the response. In order to more easily obtain the

subharmonic response in a simulation, a case with a damping of _"= 0.01 will be demonstrated. In

addition, the destabilizing force parameter o" will be set to zero to avoid potential interaction

between the subharmonic response and limit cycle instability. The harmonic balance results are

shown for this case in figure 29. The z-axis component has a much larger amplitude than the y-

axis component for this case. The maximum value of p for which convergence was attained is
1.775. The simulation results are shown in figure 30. The transient data in figure 30b has been

bandpass filtered between the normalized frequencies 0.3 and 1.26 in order to illustrate the

amplitude of the subharmonic component. The response matches the prediction quite well up to

p = 1.775. The frequency is exactly one half the excitation frequency, and the amplitudes match
for both axes. As the speed continues to increase beyond this point, the response begins a

transition phase where it appears to be seeking a new equilibrium. A new equilibrium is then
achieved, one for which the harmonic balance procedure failed to converge. Simulation of the
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samecasewith noiseperturbationadded(7 = 0.05)yields a very interestingresult (fig. 31). The
responsebelow p = 1.775 is similar to the previous case. Above this value, however, when the

response enters the transition phase it does not arrive at the same equilibrium that it did

previously. Instead, a harmonic equilibrium (i.e., no subharmonic response) is obtained. This

result suggests that the subharmonic solution above p = 1.775 is not very stable. This might

explain why the harmonic balance procedure fails to converge to a solution in this speed range.

I.I I-2 1.3 1.4 1-5 I-6 1.7 1.8 1.9 2.0 2-1

P

Figure 29. Subharmonic response solution versus p. or= 0.0, 5= 0.01.

Magnitudes of y- and z-axis components.

B. Interaction Between Limit Cycle and Mass Unbalance Response

The previous section dealt with the restricted cases for which equilibria and stability have

been determined analytically. These cases assume a specific excitation form and/or a specific
form for the solution. This section and those that follow will deal with cases for which the

assumptions do not apply.

The mass unbalance equilibrium simulation was presented in figure 22. This case was

restricted to speeds below Ptc since this equilibrium (ro > 1.0) would be unstable beyond that

point. Proceeding beyond this point results in a combination of unbalance response and limit cycle

instability. This is shown for the same model parameters in figure 32. The initiation of the limit

cycle is most clearly evident from the cascade spectral plot. The frequency of the limit cycle is

seen to be approximately equal to orp; however, the unbalance excitation does alter it somewhat.

Modulation frequencies of the excitation frequency and the limit cycle frequency can also be

observed in the spectral data. As predicted by Day, 14 these frequencies can occur at all multiples

of the difference between the two, plus or minus the limit cycle frequency. The system in this

case possesses a unique solution. For p < Ptc, the only possible solution is the unbalance

equilibrium. For p > Plc, the only possible solution is the combination solution.
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Another massunbalanceequilibrium was presentedin figure 23. This solution is for a
caseof increasedunbalance(a = 1.0).For this case,theequilibrium radiusexceedsthe deadband
(ro > 1.0). This allows for a stableequilibrium beyondthe previouslimit of p =Plc. The stable

equilibrium is possible for speeds up to the equilibrium stability limit Rue = 1.72. This was

demonstrated in figure 23. Although the stable equilibrium is possible up to p = Pue, it is not

guaranteed to be a unique solution. For values of p greater than Ptc, a combination of unbalance

response and limit cycle instability is possible even though a stable equilibrium is also possible.

This is illustrated in figure 33 by beginning where the simulation of figure 23 ended and ramping

back down into the potentially stable region. The limit cycle is maintained in this region down to

p = 1.45. To verify that the response is not merely the transient decay of an unstable response at

higher speeds, the ramp down is stopped at p = 1.5 and the limit cycle continues (fig. 34). The

absence of the limit cycle below p = 1.45 suggests that the unbalance excitation introduces a

threshold between Plc and Pue below which the combination response is not possible. The limit

cycle can also be obtained in this region by perturbation. Figure 35 shows a case where random

noise excitation is used to perturb the system (-_= 0.1). The limit cycle response is initiated in

this case at about p = 1.6 which is below Pue. As speed continues to increase to p = 2.0, the limit

cycle instability increasingly dominates the response. The amplitude grows as predicted by the

homogeneous analysis and the frequency becomes equal to trp.
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C. Interaction Between Limit Cycle and Side-Force Response

, ._e stabi;_zing capacity of the side force was explored in an earlier section. The effects of

side force on limit cycle instability will be addressed here. Since the side force can stabilize the

system at speeds greater than the global stability threshold, one might speculate that it could

also suppress the limit cycle instability that can occur at speeds below this threshold. Examples
of this are presented in figures 36 through 40. For each of these figures, the simulation has no
unbalance excitation. The side force is initially zero and is slowly ramped up to a maximum and
then back down to zero at the same rate.

Figures 36 through 38 represent three different values of p: 1.25, 1.75, and 2.0,

respectively. The maximum side force for each is 3.0. The simulation was initiated by quickly

ramping to the operating speed and allowing the limit cycle to achieve steady-state conditions
before the side force was applied. For the first two cases, the response exhibited a hysteretic

behavior. While increasing the side force, a value was reached which caused the limit cycle to

cease. While decreasing the side force, the limit cycle remained suppressed until a lower value of

side force was reached. The more unstable case (p = 1.75) required more side force to suppress

the limit cycle on the up ramp than did the case with p = 1.25. For the third case (p = 2.0), the

maximum side force (gy = 3.0) was not sufficient to suppress the limit cycle. This case was
suppressed for a side force of approximately 6.0. With the larger maximum side force, the system

exhibited the same hysteretic behavior as in the other cases. It is interesting to note that the

limit cycle reinitiates at about the same value of side force on the down ramp for all three cases.

This corresponds to the value for which the side force is insufficient to displace the rotor beyond
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the deadband. Although the limit cycle suppression occurs at different values of side force, in

each case it occurs approximately at the value where the rotor trajectory passes within the
deadband zone. In other words, if the magnitude of the deflection vector falls below 1.0 during a

portion of each period of the limit cycle, suppression of the limit cycle is imminent. The sensitivity

of the suppression and reinitiation thresholds to noise perturbation is also of interest. Figure 40

shows the same system as figure 37 for two cases of noise excitation, r/= 0.1 and 7/= 0.5. The
first case shows little effect from the noise. The second shows a small reduction in the side force

required to suppress the limit cycle (from =1.15 to =0.95). It also shows a small increase in the
reinitiation threshold (from --0.3 to---0.4). One final observation that should be made for these

cases is that the frequency of the limit cycle is relatively unaffected by the magnitude of the side

force. This can be seen from the cascade spectral plot of the p = 1.75 case shown in figure 41.

D. Interaction Between Limit Cycle and Subharmonic Response

The capacity of mass unbalance and side-force excitation to inhibit limit cycle instability

has been explored for each excitation individually. The effect of these excitations applied

simultaneously will now be explored. One effect that is anticipated is the entrainment of the limit

cycle frequency by the subharmonic response frequency. This is only possible for this system

when both excitations are present since both are required to produce the subharmonic response

phenomenon.

The approach now taken is to repeat the previous numerical experiments (figs. 36 through

39) with mass unbalance added. This will be done for two values of the unbalance parameter, a =

0.5 and a = 1.0. The effects of noise will also be explored. Figures 42 through 44 present the
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resultsfor a = 0.5. In figures 42 and 43, p has values of 1.25 and 1.75, respectively, and gy has a
maximum value of 3.0 as before. In figure 44, p has a value of 2.0 and gy has a maximum value of
10.0. The results for these cases are similar to the side force only cases. One major difference is

the entrainment of the limit cycle by the subharmonic response. In figure 42, this occurs almost

instantly as the side force is applied. Comparing figure 43 with the corresponding case with no
unbalance (fig. 37), it is clear that the limit cycle transitions to subharmonic at a value of gy which

is less than the value which suppressed the limit cycle in figure 37 (=0.75 versus =1.25). In

addition, the subharmonic response is maintained beyond the limit cycle suppression value (up to

gr- 1.75). Upon decreasing the side force, the subharmonic and limit cycle remain suppressed
until a lower value of side force is reached. Adding noise affects this behavior as shown in figure

45 (7 = 0.5). The reinitiation occurs for larger values of side force than without the noise. The

cascade spectral plot for this case (fig. 46) shows the distinct frequency shift that occurs when

the limit cycle becomes entrained. The case with p = 2.0 (fig. 44) does not demonstrate the
entrainment. This case behaves almost identically to the corresponding case without unbalance

(fig. 39) with a small harmonic component superimposed due to the unbalance excitation. The
absence of the subharmonic is due to the fact that p = 2.0 is above the range of possible

existence of the subharmonic, as shown in figure 13.

The results for the same cases with increased unbalance (a = 1.0) exhibit somewhat

different behavior. The low speed case (p = 1.25) does not exhibit any limit cycle instability. This

is due to the existence of a stable unbalance equilibrium for this speed. The lack of a one-half

subharmonic is due to the fact that p = 1.25 is below the range of possible existence. As the side

force increases, a low amplitude two-thirds subharmonic develops for a small range of side force

when noise excitation is present (7 = 0.5). The results are shown in the cascade spectral plot in

figure 47. The intermediate speed case (p = 1.75) exhibits subharmonic response almost
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Figure 45. Interaction between limit cycle and subharmonic response.
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immediately after the initiation of the side-forceramp. Due to unbalanceexcitation effects, the
limit cycle frequencyratio is very near0.5 for thiscase.The subharmonicis suppressedwhenthe
side force exceedsthe value for which existenceis possible.The subharmonicreinitiates at a
lower value when the side force is decreased.Theseresults are shown in figure 48. The high
speedcase(/9= 2.0) againexhibits only limit cycle instability sinceit falls beyond the rangeof
possible subharmonic.The resultsare very similar to the previouscases(a = 0.0 and a = 0.5)

and are shown in figure 49.
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E. Effects of Operating Profile on Interacting Responses

The effects of the unbalance, side force, and combined unbalance and side force on the

limit cycle instability have been demonstrated. The results have shown a strong dependence on

initial conditions and perturbations. This is indicated by the hysteretic behavior during the side-

force ramp up and back down, for example, and by the sensitivity to noise perturbation. These

results were obtained using certain numerical experiments where parameters were intentionally

varied in order to gain insight into the response of the system. These variations were not
necessarily representative of actual operating profiles of a turbomachine. Due to the sensitivity of

the system to initial conditions, it is important to consider realistic operating profiles to assess

the potential for the occurrence of limit cycle behavior or subharmonic response. This will be

accomplished using a series of simulations where speed is ramped up and back down while the

other system parameters are held fixed. The simulations are initialized by rapidly ramping speed

from zero to a value of p = 1.0. Speed is then held constant for a period of time. The side force

begins at zero initially and ramps to its steady value somewhat slower than speed. It reaches its

maximum at the end of the steady hold time for speed. Speed is then ramped up to p = 2.0 and

back to p = 1.0 while the side force remains constant. These profiles are shown in figure 50. This

approach allows the system to achieve a steady-state initial condition at a speed which is

outside the range of limit cycle or subharmonic response. The maximum value of the side force,

the unbalance, and the random noise parameter are the model parameters that will be varied in
this series of experiments.

The first three cases examined all have unbalance magnitudes of a = 0.5. The first has a

side force magnitude of gy = 1.5. For the second gy = 1.0 and for the third gy = 0.5. Results for tb_e

first case are shown in figure 51. This case also has random noise perturbation (r/ = 0.5). No

limit cycle or subharmonic occurs for this case. A low-level response of the system resonance to

the noise excitation is visible in the plot. Without the noise excitation this case exhibited only

synchronous harmonic response to the unbalance excitation. This case represents a case similar

to that of figures 43 and 45. In the earlier simulations, speed was held fixed and the side force

was varied while the converse is true in the current simulation. Examining the response in figure

45 at a value of gy = 1.5 shows that a subharmonic existed on the up ramp but only the
synchronous harmonic existed at this value on the down ramp. These results indicate that the

initial conditions and/or the perturbation used in the current simulation were not suitable for

initiating the subharmonic response. The second case (gy = 1.0) also failed to exhibit any

nonsynchronous response in the absence of noise. With noise excitation (7/ = 0.5) however, both

subharmonic response and limit cycle instability are observed. These results are shown in figures

52 and 53. The subharmonic initiates at p = 1.6. The response transitions to limit cycle instability

above p = 1.8. This is approximately the upper limit of possible subharmonic response for this

case. For the case of low damping and no cross-coupled stiffness examined previously (figs. 29
and 30), the response in this region appeared to be seeking a subharmonic equilibrium that was

not predicted by the harmonic balance procedure. When noise excitation was added (fig. 31) this
did not occur. The current results suggest that for a system which has cross-coupled stiffness of

the type addressed here (or near 0.5), the response will transition to the limit cycle instability in

this region and not arrive at the weakly stable subharmonic solution. This would be expected

since the system is moving very close to the global onset speed of instability Pgi. The third case

(gy = 0.5) behaves very similarly to the second. The results are shown in figures 54 and 55. One
significant difference is that noise excitation was not necessary to initiate the subharmonic

response. The lower value of side force causes the displacement to fall within the deadband

(r < 1.0) which perturbs the system to such an extent that the subharmonic is initiated. Once the
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subharmonicis initiated, it transitionsto the limit cycle when p exceeds the range of possible

subharmonic. The only other difference noted is in the specific values of p at which transition
occurred.

The three cases just examined were repeated with an unbalance value of a = 1.0 instead

of a = 0.5. The results are shown in figures 56 through 61. For each of these cases, the

subharmonic was initiated and transitioned to limit cycle instability without the noise

perturbation. When the side force is increased to gy = 2.0, noise is necessary to cause the

subharmonic response to initiate (figs. 62 and 63).

Figure 56.
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Figure 61. Cascade spectral plot of figure 60. Spectra taken in dimensionless time increments of

400. gy = 0.5, a = 1.0, and _ = 0.0001.
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F. Effects of Other System Parameters on Interacting Responses

The effects of speed, side force, mass unbalance, and random noise on the interacting limit

cycle and subharmonic response have been explored. The effects of the cross-coupled stiffness
parameter or, the nonlinear stiffness parameter _, and the damping parameter _" are also of

interest. The previous case with gy = 1.0 and a = 1.0 (figs. 58 and 59) will be used as the basis
for making variations in these other system parameters.

The effects of a were examined by changing its value from the nominal of 0.48 to 0.40 and

0.52. Results of the first case are shown in figures 64 and 65. The maximum speed was increased

to p = 2.5 for this case since that is the value of the global instability threshold. Random noise

was used to increase the probability of initiation of potential subharmonic response or limit cycle.

A subharmonic response occurs for this case in the speed range where it can exist. When this

range is exceeded, the subharmonic disappears and no limit cycle appears. This is in contrast to

the previous cases where the subharmonic transitioned to a limit cycle. For this value of cr
however, the destabilizing force is insufficient to overcome the stabilizing capacity of the side

force. As speed is increased and the system becomes less stable, the limit cycle initiates at a

frequency of =crp. This occurs at a higher speed than in the cases with the nominal value of or.

There are, therefore, two distinct regions of speed where subharmonic response and limit cycle

instability individually occur when or= 0.40. The case with cr = 0.52 is shown in figures 66 and 67.

The behavior here is similar to the baseline case except for the obvious difference in the limit

cycle frequency (=0.52/9). One other difference is that the global instability limit (Pgi = 1.92) is
just slightly above the upper limit of possible subharmonic response. This causes the transition

from subharmonic to limit cycle to occur just before the onset of divergence. This simulation was

executed with a ramp rate half that of the previous cases in order to identify the transition.
Another difference is that the transition back to subharmonic response on the ramp down exhibits

considerably more hysteresis than the previous cases. In other words, the range of speed for

which either response can occur is greater.

The effects of _,were examined by changing its value from the nominal of 0.75 to 0.50 and

0.25. These values represent progressively more linear cases. The results for _ = 0.50 are shown

in figures 68 and 69. The general characteristics of the response are the same as the nominal

case. As predicted by the subharmonic response analysis, the subharmonic remains for higher

speeds and has a lower amplitude. As predicted by the homogeneous limit cycle analysis, the

limit cycle has a lower amplitude also. The results for 7'= 0.25 are shown in figures 70 and 71.
This case did not develop either subharmonic response or limit cycle. This is due to the very

narrow range of speed and low amplitude for potential subharmonic and the low amplitude for

potential limit cycle. Since this system is nearly linear, this might also have been intuitively

expected.

The effects of _" were examined by changing its value from the nominal of 0.10 to 0.05 and

0.20. It should be noted that when _'is changed the cross-coupled stiffness is also changed

proportionately according to equation (125). The results for _"= 0.05 are shown in figures 72 and

73. The only difference noted is that the transition from subharmonic to limit cycle occurs at a

higher speed than in the nominal case. This is due to the fact that the upper limit of potential

subharmonic is higher for this case (fig. 16). The results for _"= 0.20 are shown in figures 74 and

75. As might be expected, the transition occurs at a lower value of speed for this case.
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G. Nonuniqueness of Solutions

The nonuniqueness of either the subharmonic response solution or the limit cycle solution

when mass unbalance and side force excitations are applied simultaneously has already been

indicated by the hysteretic behavior of some of the simulations. This occurred for both side-force

ramps and speed ramps. Results for another simulation which clearly illustrates this are shown

in figures 76 and 77. This case is the same as that shown in figures 58 and 59 (a = 1.0, gy = 1.0,

_', or, and },nominal) with two exceptions. First, random noise (7 = 0.5) has been added.

Second, the speed profile has been altered to dwell on the up ramp at p = 1.845 and remain at
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that value for the remainderof the simulation.From the figures it can be seenthat the response
is initially a subharmonic.After some time it changesto limit cycle. Some time after this it
changesback to a subharmonic.All model parametersare fixed during this time period. The
random noise has the effect of superimposinga variation on the side force. This behavior of
changingback and forth betweensolutionswhenno apparentchangehasoccurredin the system
is very significant when reviewing test data.This will become more apparentwhen test data
from the SSME HPFTPis presentedin sectionVI.

H. Effects of Mass Unbalance on the Stability of Side-Force Equilibria

The stability of the side-force equilibrium was analyzed in section III and demonstrated

with simulations earlier in this section. The possible effects of mass unbalance perturbing the

stability of this equilibrium were discussed. The effects have been explored using simulations of

the nominal model with gy = 1.5 and two values of unbalance (a = 0.5 and a = 1.0). The stability
threshold for the side-force equilibrium in this case is p - 2.7. Speed was ramped from p = 1.0 to

p = 3.0 after initiating the simulations as discussed previously. Results for both cases are

presented in figure 78. Results for a = 0.5 show that this value of unbalance does not perturb the

equilibrium beyond its range of stability. It remains stable for values of p up to 2.7. For a = 1.0,
the unbalance is sufficient to initiate a subharmonic response at p--- 1.6. As speed increases, this

transitions to limit cycle instability at p - 1.9. Now the system is in a limit cycle instability when

the speed increases beyond the global instability threshold (Pgi = 2.08) and the response
diverges. The effect of the unbalance is to alter the state of the system when the global

instability threshold is crossed. In another sense, the subharmonic response causes the initiation

of the limit cycle which diverges when the threshold is crossed. If the unbalance and side-force

parameters are such that the subharmonic does not occur, the side force can stabilize the system

beyond the global threshold even in the presence of unbalance and noise perturbation.
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The behavior of the model undergeneralloading conditions has been characterizedin
terms of its behavior under certain restricted conditions. These restricted conditions are the
homogeneous response (which describes the limit cycle behavior), the mass unbalance
equilibrium, the side-force equilibrium, and the generalloading casewith the assumptionof
harmonic and subharmonicresponse.These resultswill be extended to the SSME HPFTP in
sectionVI.

VI. EXTENSION OF RESULTS TO COMPLEX MODEL

The previous sections have dealt with a simplified model of a turbopump in order to

enhance the understanding of the basic phenomena being studied. The objective of this section is

to demonstrate that these results extend to a more complex, realistic model of an actual

turbopump. This will be achieved by examining the HPFTP of the SSME. Test data will be

presented for cases where the phenomena appear to have occurred. Analyses and simulations of
a model of the HPFTP will also be discussed.

A. Description of SSME HPFTP

The SSME is manufactured by Rockwell International, Rocketdyne Division for NASA. It

is a liquid hydrogen/liquid oxygen staged combustion rocket engine. The primary components of

such an engine are the main combustion chamber and nozzle, the high pressure turbopumps

which feed the fuel and oxidizer to the main combustion chamber, and the combustion system

which drives the turbopumps. In the case of the SSME, each pump has its own combustion

device known as a preburner. The fuel is partially burned in these preburners (oxygen/hydrogen

mixture ratio approximately one to one) and the resulting combustion gases drive the turbines.

These gases then proceed to the main chamber where they are completely burned according to
stoichiometric balance (mixture ratio approximately six to one). A schematic diagram of the

propellant flow is shown in figure 79a. The HPFTP is shown in figure 79b. For engine operation

at 109 percent of rated power level, the HPFTP runs at approximately 36,600 r/min, depending on

actual engine performance. It consists of a three-stage centrifugal pump section which is driven
by a two-stage turbine. The rotor is supported primarily by two pairs of angular contact ball

bearings, one pair on each end. The two-pump interstage seals also provide significant restoring

forces for relative lateral rotor motion. These seals provide the majority of the damping and

cross-coupled stiffness forces. The turbine section provides significant additional cross-coupled

stiffness due primarily to the Alford effect. The Alford effect is a variation in the aerodynamic
efficiency of individual turbine blades as the turbine disk moves eccentric with respect to the
stator. The blades on one side will be more efficient than those on the other due to their smaller

tip clearance. The net effect is a tangential force proportional to the radial displacement which is

modeled as a cross-coupled stiffness. Additional stiffness, damping, and cross-coupled stiffness

forces arise at the turbine interstage seal. The impellers and their associated seals produce

forces as well; however, their magnitudes are much smaller than the pump interstage seal forces.

These forces will be neglected here in order to simplify the model. The error introduced by doing

so is no greater than the error due to the uncertainty in the dominant pump interstage seal and

ball bearing forces.

The nominal data used to define the HPFTP model used in this study are contained in
appendix B. These data were adjusted within their uncertainties in order to achieve the desired
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behaviorsas observedin tests.The adjustmentsarediscussedin the section dealing with model
results. These data were provided by the turbopump manufacturer (Rocketdyne) with the
exceptionof the pump interstageseal cross-coupledstiffness.This datahas beenreplacedby a
function of the form of equation (125). The damping value supplied by the manufacturer is
multiplied by the shaft angular velocity and then by the destabilizing force parameteror. This

simplifies the process of relating the HPFTP model results to the simplified model results.

The model for the HPFTP is more complex than the single mass model in several

respects. One of the most obvious differences is the addition of the housing dynamics to the

model. Another distinction is that all parameters are distributed along the axis of the rotor. The

support characteristics (both linear and nonlinear), rotor and housing mass and stiffness

properties, and the excitation forces all have independent (discrete) distributions along the rotor,

in general. These differences are complicating enough, however, the most significant complexity

is not as obvious. Virtually every parameter in the model varies with turbopump operating speed

either directly or indirectly. The rotor and housing free-free dynamic characteristics and the mass

unbalance distribution are exceptions. The stiffness and damping coefficients and the side-force
excitation vary either with speed directly or with engine power level (which can be related to

speed). The clearances, geometric eccentricities from centerline, and random noise excitations

would be expected to vary in the actual machine. These variations are unknown, however, and

are not prescribed in the model. The fact that they probably occur must be recalled when
interpreting test data and simulation results. Finally, simply the number of parameters in the

model make interpretation of results difficult. The same result or trend could probably be obtained
with more than one set of parameters (or "recipe").

B. HPFTP Test Data

Development of the SSME began in 1971. High power level testing began in 1978. Since

that time hundreds of engine tests have been performed yielding massive amounts of data.
During the course of the engine's development, the design of the HPFTP has evolved and there

are many different configurations that have been tested. The subsynchronous vibration problems

that motivated this work have changed with the design changes. An in-depth review of the
history of the problems and the design changes would take volumes, however, Hawkins 17

provides a good summary. There are three primary conclusions with relevance to this work which

can be drawn from the historical data. First, the occurrence of the subsynchronous vibration, its

amplitude, and its frequency are erratic. Only a certain percentage of all tests exhibit the

phenomena and the frequencies and amplitudes vary. The frequencies fall within the range of 47
to 56 percent of rotor speed for all configurations and 47 to 52 percent for the current

configuration. Second, configurations with higher side forces do not exhibit the phenomena as

often and the amplitudes tend to be lower. The side-force differences are due to changes in the
turbine discharge section which altered the pressure distribution in the turbine section. Third, the

increased stiffness of the currently used pump interstage seals reduces the amplitudes of the

phenomena. The initial seals used in high power level testing were three step, smooth seals and

the current seals are straight, smooth seals. One might expect that these configurations would

also have a lower frequency of occurrence; however, they were generally tested to higher power
levels at which they are less stable.

In most tests, the rotordynamic instrumentation on the HPFTP has been limited to

accelerometers mounted externally on the housing. This makes it somewhat difficult to determine

what dynamic behavior of the rotor might be creating a particular vibration response on the
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housing• Specially instrumented units have been built on occasion which have internal rotor

displacement measurements. One test of one of these units has been selected for discussion

here. The HPFTP in this test displayed significant levels of subsynchronous vibration with very

interesting characteristics• The test was designated as 750-270 and the HPFTP was unit

number 2708R1. The turbopump was instrumented with radial displacement measurements in

two axes at the seal between the first and second pump stages. It also contained the normal set
of external accelerometers.

The power level profile for test 750-270 is shown in figure 80. After throttling down to 80-

percent power level, the level was slowly increased to 109-percent power level. The actual

profile was a series of steps of one-half percent power level with 3-s dwells at each step. Upon

reaching 109-percent power level at 238 s, the level was held constant until 271 s. During this
period, the liquid oxygen tank pressure was reduced (vented) to simulate flight conditions. This

lowers the liquid oxygen inlet pressure to the low pressure oxidizer turbopump and, hence,

lowers the liquid oxygen outlet pressures throughout the system. The engine controller

compensates for this perturbation by adjusting valves in the system and maintains system thrust
(power level) and mixture ratio. The liquid oxygen vent schedule is superimposed on the power

profile in figure 80.

The response of the HPFTP to the power profile described above is shown in figures 81a

through 81g. The figures contain frequency spectra of one of the radial displacement

measurements. These data were provided by the engine manufacturer (Rocketdyne). Many

measurements and many methods of processing the data are available. This measurement is

representative of the response of the HPFTP, and this method of processing yields a concise

representation of the important features of the response. This series of plots presents a

sequence of frequency spectra beginning at 170.8 s and continuing until 272.7 s. Each spectrum

represents nine spectral averages (to reduce noise). The frequency resolution of the spectra is

5.0 Hz, therefore, each individual spectrum requires 0.20 s of data for analysis. Each plot of the

average of nine spectra, then, represents 1.80 s of data. The samples are taken at 3-s intervals
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in order to correspondto the dwells in the profile. The spectraare arrangedin the figures from
bottom to top for increasingtime. The distinct spike near600 Hz is the synchronouscomponent
due to massunbalanceexcitation. A line has been superimposed on the plots at the frequency

corresponding to one-half this synchronous frequency. This is to highlight any occurrence of
subharmonic response.

The spectra in figure 81a are typical of responses earlier in the profile. The noise in the

system is exciting the first resonance; however, neither subharmonic response nor limit-cycle

instability appear to be present. It should be noted that the vertical axis scale is logarithmic for

these plots. As the power level increases, figures 81b through 81e show the inception of one-half
order subharmonic response. The subharmonic increases in amplitude throughout this interval.

The last two plots in figure 81e occur after the power level is held constant at 109 percent. All

plots in figure 81f are also at this constant power level. The first plot in this figure shows that the

system is still exhibiting subharmonic response. The remaining plots indicate a transition

between subharmonic response and limit-cycle instability. This is very similar to the behavior

described in section V (figs. 76 and 77) for the simplified model. The amplitude increases

significantly as the transition occurs. The modulation frequency of the excitation frequency and

the limit cycle frequency which was discussed in section V (fig. 32) is evident during the

transition. Figure 81g shows the fully developed limit-cycle behavior. The frequency of the limit

cycle is approximately 47 percent of the rotation frequency. The last two plots in this figure occur

after power is reduced from 109 percent and are not of interest here. It should be noted that the

liquid oxygen venting was initiated during the period of fixed power level when the transition from

subharmonic response to limit cycle occurred. Although an exact mechanism is not known, the

venting may have created a small perturbation to the HPFFP which initiated the transition. Also,

as demonstrated in section V, the system noise itself may have been sufficient to initiate the

transition and the timing with the vent profile may have been just coincidence.

The test data described above can be interpreted in the context of the analytical and

numerical results of the previous sections. The machine appears to be operating at the upper limit

of the range of possible subharmonic response. For the simplified model, this upper limit ranged

from about 1.7 to about 1.9 times the zero deadband linear system resonance, depending on the

system parameters. In addition, the transition to limit cycle instability with higher vibration

amplitudes indicates that the machine is approaching the global onset speed of instability as

defined in section III. For the simplified model, the 47-percent limit cycle frequency ratio would

imply that the global onset speed would be 2.13 times the linear system resonance. For the 109-
percent power level speed of approximately 36,300 r/min, using the upper limit of possible

subharmonic given above yields a linear system resonance between 19,105 r/min (318 Hz) and

21,353 r/min (356 Hz). The corresponding range of onset speeds of instability is 40,694 r/min to

45,482 r/min. These values will be used as a guide in assessing the results from the
mathematical model.

C. Linear Analysis Results

The mathematical model results can be separated into linear analysis results and

nonlinear simulation results. The primary linear analysis results of interest here are the
eigenvalues and eigenvectors of the linear system obtained from the zero deadband assumption.

Since the parameters of the system model are functions of operating speed, the eigenvalue

problem must be solved for many speed values in the range of interest. For each different value of

speed, the entire set of eigenvalues and eigenvectors (in this case, 39 complex conjugate pairs)
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are recalculated.In general,since the systemmatrix is different at each speed,the eigenvalues
and vectors for one speedmay not be relatedto thoseat another.However, there is a known
relationshipbetweenthe elementsof the systemmatrix at different speeds.Becauseof this, one
would expect to be able to relate the systemcharacteristicsfor one speedto those at another
speedwhich is relatively close to the first. This is in fact the case,however, it is not entirely
straightforward. As speedis varied, the eigenvaluestend to move along loci whose patterns
become apparentby visual observation.The associatedeigenvector of an eigenvalue at one
speedfor a particular locus is usually very similar to that at anotherspeedon the samelocus.
This is not alwaysthe case,however.For largespeedchanges,the dynamicsof the systemcan
changedramatically, and theremay be no recognizablerelationshipbetweeneigenvectorsat one
speedand thoseat another.This may be true even though the eigenvaluestraced out clearly
identifiable loci whenmigrating asspeedvaried.Another difficulty is when two loci intersector
nearly intersect. In theseinstances,the characteristicsof the eigenvectorsassociatedwith the
loci may switch. This type of behavioris observedin the results from the HPFTPmodel. When
this occurs, the only meaningful associationbetweeneigenvaluesat one speed and those at
anothermust be basedon similarity of their associatedeigenvectors,not on the patternsof their
loci.

The eigenanalysisresults can be presentedin several ways. One way is to plot the
eigenvalues in the complex plane where the locus patterns are evident (root locus). This
presentationhas the disadvantagethat the correspondingspeedsarenot readily visible. Another
way is to plot the real and imaginary parts of the eigenvaluesversusspeed.This presentation
does not provide as much visibility to the loci patterns but clearly indicates the speed
correspondence.Yet anothermethodis to plot the critical damping ratio associatedwith each
pair of complex roots versusspeed.This providessome"calibration" for the real part of the
eigenvalueindicating its relativestability. The complexeigenvectorsarepresentedin the manner
describedin appendixA. Due to thelargenumberof eigenvaluesfor this system,eigenvalueand
eigenvector information will only be provided for thoseeigenvaluesrelated to the limit cycle
instability and subharmonicresponse.

The linear analysis(zerodeadbandassumption)resultsfor the HPFTPusing the nominal
datadiscussedin appendixB are presentedin figures 82 through 84. These figures presentthe
root loci, imaginary components,and critical dampingratio, respectively, for two eigenvalues
designatedNo. 3 andNo. 4. On the root loci (fig. 82), the "X" symbolindicatesthe startingspeed
(10,000 r/min) and each circle correspondsto a 1,000-r/min increment.Theseeigenvalue loci
exhibit the switching behavior discussedpreviously. At the higher speeds, the eigenvector
associatedwith eigenvalue No. 3 possessesthe characteristicsof the unstable behavior. This
eigenvector is shown in figure 85. This figure displays the relative component (rotor minus
housing) of the eigenvector.The rotor precessesin a forward direction (exceptat the pump end
bearings)with only a small amountof housingmotion. The motion can be describedas a rigid
body translationwith superimposedrotor flexing. From figures 82 and84, it can beseenthat the
locus for this eigenvectoris movingtowardinstability. From figure 83, the frequencyis observed
to vary between250 and 360 Hz with a value of about 335 Hz at the 109-percentpower level
speed(36,300 r/min). At the lower speeds,the eigenvectorassociatedwith eigenvalueNo. 4
possessesthe characteristics of the unstablebehavior. The locus for this eigenvalue heads
towardtheright half planeinitially. Thecritical dampingratio reachesa minimum at 25,000r/min
and the locus then reversesdirection. This is due to the switching which takes place between
this locusandthe onefor eigenvalueNo. 3.
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While systems of this sort are generally less stable at higher speeds,the interaction
betweeneigenvalue loci createsa range of speedwhere stability is actually enhanced.This
particular occurrenceappears to be related to the asymmetry in the housing; in particular,
asymmetry in the frequency-dependentdynamic impedanceof the housing which is an integral
part of the rotor support.The stabilizing capacity of asymmetryis well known and documented
(seereferences12and 18, for example).Thehousingimpedanceasymmetryeffect can be shown
by modifying the housing model so that the rotor dynamics do not "tune" with the housing
dynamics and create this behavior. Figure 86 shows the root loci for the case where the
frequenciesof the third and fourth housinginput modesare increased20 percent.For this case,
theswitching doesnot occur,andthe locusfor eigenvalueNo. 4 progressesfairly quickly into the
right half plane.The stabilizingcapacityof theswitchingbehaviorwill complicatecomparisonsof
the HPFTPmodel's behaviorwith the simplified model results.However, the model will not be
adjustedto remove this characteristicsince it may truly be representativeof the behavior of the
HPFTP.
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Figure 86. Root loci for eigenvalues No. 3 and No. 4 of the nominal HPFTP linear model

with modified housing modal data.

The linear analysis results for the nominal HPFTP model indicate that the model is too
stable to exhibit limit cycle instability. Based on the analytical results from the simplified model

there are two ways to reduce the stability of the system: increase the cross-coupled stiffness

parameter _ and reduce the pertinent natural frequency (most likely by reducing the rotor

support stiffness). The first method will increase the frequency ratio of a limit cycle while the

second will not. The specific test data being examined here indicates a limit cycle frequency ratio

of 47 percent; therefore, it is undesirable to adjust the model by increasing the parameter or. The

stiffness of the beatings and seals was decreased by trial and error until suitable results were

achieved. Greater reduction was made in the seal stiffness than in the bearing stiffness in order

to maintain a strong effect from the nonlinearity (y parameter). The final values chosen were
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92 percent of the nominal bearing stiffness and 60 percentof the nominal seal stiffness. The
cross-coupledstiffness parameterfor the pump interstageseals (cr) was reduced from 0.6 to
0.55and the turbine interstagesealandAlford effect cross-couplingwasreducedto 75 percentof
the nominal value. Thesechangeswere basedon resultsof simulation trials.

The linear analysisresultsfor the modifiedmodel arepresentedin figures 87 through89.
Figures 87 (root loci) and 89 (critical dampingratio) show the sameswitching behavior asthe
nominal model.The transitionoccursat a higherspeedfor the modified model.The frequencyof
eigenvalue No. 3 is about 310 Hz at the 109-percentpower level speed.The onset speedof
instability is 44,000 r/min. At the imaginary axis crossing,the frequency of the eigenvalueis
approximately328 Hz. This translatesinto a ratio of 45 percent.Thesevaluescomparefavorably
with the guidelinevaluesinferredfrom thetestdata.
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D. Nonlinear Simulation Results

The general behavior of the simplified model was characterized in terms of its behavior

under certain restricted conditions in section V. The restricted conditions were analyzed in
sections III and IV. The homogeneous equilibrium, unbalance mass equilibrium, and side-force

equilibrium and their respective linearizations provided bounds for parameter ranges where limit

cycle behavior is possible. The subharmonic response harmonic balance solution provided bounds
for parameter ranges where subharmonic response is possible. These results were based on

analytical and combined analytcal/numefical solutions to the nonlinear system equations. These

approaches were rather straightforward for the simplified model. Analogous methods for the more

general and complex turbopump model have not been developed; however, the approach of using
the restricted case results to characterize the general case results is still valid. Simulation must

be used rather than analytical means to obtain the restricted case results. The HPFTP model

will, therefore, be simulated for the three restricted excitation cases analyzed for the simplified

model. The first is the homogeneous case. This case is not truly homogeneous since noise

excitation is imposed, but it will serve to characterize the lower limit, amplitude, frequency, and

global stability limit of the limit cycle behavior. The second is the unbalance mass equilibrium
case (again with noise excitation). This case will show the limits where stable unbalance

equilibrium is possible and where limit cycle will exist along with the unbalance response. The
third is the side-force equilibrium case (also with noise). This case will show the limits where

limit cycle is possible under the stabilizing influence of side force. These cases will be examined

by executing a speed ramp up to just beyond the global onset speed of instability and then back

down. A general loading case will then be examined with the same ramp profile. The response to
this loading can then be characterized in terms of the limits and characteristics of the three

restricted cases. The subharmonic response analysis of the simplified model was not based on a

restricted excitation but, rather, on a specific assumed form of solution. No special simulation
case is required to investigate this behavior. The general excitation case will be examined to

determine whether subharmonic response occurs.

Simulation results for the homogeneous case are presented in figures 90 and 91. Figure 90

displays the "z" axis relative displacement at the inboard turbine end bearing location. The top

graph shows the response to the ramp up, and the bottom graph shows the response to the ramp

down. The speed profile consisted of a 4.5-s ramp from zero to 45,000 r/min and a 2.5-s ramp

back down to 20,000 r/min. Figure 91 displays the cascade spectral plots corresponding to figure
90. Limit cycle instability initiates at approximately 25,000 r/min with a low amplitude. The

frequency ratio is about 55 percent. The amplitude increases steadily until a speed of about

32,000 r/min is reached. Between this speed and about 35,000 r/min, the amplitude decreases

slightly and the frequency ratio drops to about 47 percent. This transition corresponds to the

eigenvalue switching observed in the linear analysis. As speed is increased beyond this

transition, the amplitude increases in the same manner as the limit cycle in the simplified model.
The reverse behavior occurs on the down ramp with no apparent hysteresis. The mass unbalance

excitation case produced similar results (figs. 92 and 93). The limit cycle initiation was

suppressed until about 32,000 r/min by the unbalance equilibrium. On the down ramp, the limit
cycle was maintained until about 29,000 r/min. This is similar to the hysteretic behavior observed
for the simplified model.

The side-force excitation exhibited the greatest amount of hysteresis (fig. 94). On the up
ramp, the limit cycle did not initiate until the global onset speed of instability was reached

(44,000 r/min). On the down ramp, the limit cycle was sustained until about 35,500 r/min.
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Figure 94. Nominal side-force excitation simulation results for modified HPFTP
nonlinear model. Inboard turbine bearing response.

This value represents the lowest speed for which a limit cycle is possible with the given side-
force excitation. This limit must be lowered in order to obtain general loading results which

exhibit limit cycle at the 109-percent power level speed (36,300). This was accomplished by

reducing the side force to 75 percent of its nominal value. This produced the results shown in

figures 95 and 96. The limit cycle was sustained in this case until about 31,000 r/min.

Results have been presented for the three restricted cases with bounds identified for the

occurrence of limit cycle instability. The general combined loading case will now be presented.
The initial case simulated consisted of a direct combination of the previous cases; i.e., nominal

mass unbalance, 75 percent of the nominal side force, and the same noise excitation. This case

exhibited limit-cycle behavior but did not exhibit any subharmonic response. One of the

objectives of this examination is to determine if the behavior of the simplified model

(subharmonic entrainment and transition to limit cycle) extends to the more complex HPFTP
model. In order to determine this, the mass unbalance was varied by trial and error in an attempt

to find a combination of parameters which resulted in subharmonic. Increasing the unbalance

uniformly by 50 percent produced the desired results.

Figures 97 and 98 present the time and spectral data for the response to the same profile
as the three restricted cases. As speed reaches about 30,000 r/rain, limit cycle initiates at a low

amplitude with a frequency ratio just above 50 percent. At about 33,000 r/min, this limit cycle
becomes entrained by subharmonic response at the 50-percent ratio. This entrained response

transitions to a limit cycle of about 47-percent frequency above 35,000 r/min. The down ramp did
not exhibit subharmonic entrainment but behaved very similarly to the unbalance excitation case

(figs. 92 and 93). The up ramp behavior can be more clearly seen in figures 99 and 100. This case
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Figure 95. Reduced side-force excitation simulation results for modified HPPTP

nonlinear model. Inboard turbine bearing response.
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Slow ramp from 32,000 r/min to 37,000 r/min. Inboard turbine bearing response.
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is identical to the other except that the speedprofile wasaltered about 32,000 r/min. For this
case,speedwas increasedfrom 32,000r/min to 37,000r/min in 4.5 s, the samelength of time as
the original ramp from zero to 45,000r/min. The threezonesof behaviorare observablein both
the time dataandin thespectraldata.The movementfrom thehigher frequencyratio to the lower
frequency ratio was observedfor the homogeneouscaseand the massunbalancecaseand was
attributed to the eigenvalue loci switching behavior. However, the entrainment at the
subharmonicfrequencyis uniqueto thegeneralcombinedloadingcase.

Another important result which was presented for the simplified model in section V (figs.
76 and 77) is the nonuniqueness of the solution. This behavior is demonstrated for the HPFTP

model by holding the speed profile for this case at 35,000 r/min. The time response for this

simulation is shown in figure 101 with an expanded portion shown in figure 102. The spectral

results are shown in figure 103. The system is clearly jumping between limit cycle entrained by

subharmonic response and pure limit cycle. The frequency of the limit cycle at this speed is close

to 0.5 due to the shift from the higher to lower ratio noted earlier. This proximity and the rapid
manner in which the transitions occur make it difficult to obtain FFT results as clear as for the

simplified model. The only change occurring in the parameters of the model is the random noise

excitation. The response remains in one form for as long as 0.3 s.

The results of the combined excitation case have clear implications related to
interpretation of test results. For one set of parameter values, the model exhibits subharmonic

response, limit cycle with a frequency greater than subharmonic, and limit cycle with frequency
less than subharmonic, all within a narrow speed range. The model also exhibited transitions
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betweensubharmonicand limit cycle at a fixed speed.All of these behaviors have been observed
in test data. The model results indicate that the specific ranges of occurrence, frequency ratios,

amplitudes, and transition speeds are quite sensitive to many model parameters which are not
known with much certainty. The nonuniqueness and sensitivity of the solutions can easily
account for the behaviors observed in test data.

The results of the previous sections for the simplified model have been shown to extend

to a more complex and realistic model of the HPFTP of the SSME. This was accomplished by

examining engine test data, performing linear analysis of the model, and simulating the model for

various conditions. The conclusions of this and the previous sections will be summarized in the
next and final section.

VII. CONCLUSIONS

An extensive investigation has been conducted of the interaction between limit-cycle

instability and subharmonic response in a rotordynamic system. The primary tool used in the

study was a dimensionless, normalized model of a single mass rotor. Equilibria were determined

for various excitations; linearizations and stability analyses were performed. A harmonic balance

procedure was implemented to analyze subharmonic response potential. The model was

simulated for the conditions which were analyzed and then for conditions which could not be

treated analytical. Generalization of the results to a complex, realistic model were confh'med by
examining the HPFTP of the SSME. This was accomplished using linear analysis and nonlinear

simulation and by examining engine test data. The analyses and simulations were conducted
using a general turbopump rotordynamic analysis package developed for this research. The

conclusions which are drawn from this work can be separated into two groups: conclusions

regarding the characteristics of the behavior, and conclusions regarding analysis and simulation
methods. The conclusions are summarized below.

A. Characteristics of the Behavior

The most significant conclusion from this work is the determination that subharmonic

response can entrain self-excited limit-cycle oscillations in rotordynamic systems. There is an

important implication from this conclusion. The occurrence of a subsynchronous vibration at a

frequency exactly equal to one half the shaft rotational speed is sometimes interpreted as

evidence that the vibration is only subharmonic response and is benign in the sense of instability

(subharmonic response may have adverse results due to overloading and fatigue which are

unrelated to stability). These results indicate that this interpretation should not be made in any

system in which self-excited vibration is possible. This covers virtually all turbomachinery which

operates above a system critical speed characterized primarily by rotor motion.

Another conclusion drawn from this investigation is that the behavior under given

conditions is nonunique. This is known for nonlinear systems in general; however, the specific

possible solutions were determined and demonstrated. The most striking demonstration was the

repeated transitions between limit-cycle instability and subharmonic entrainment in the presence
of random noise excitation.
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Finally, the ability of side-forceand mass-unbalanceexcitations to suppressthe limit-
cycle behavior was demonstrated.The side-force excitation may, in addition, stabilize the
systemin thesmall for speedsbeyondtheglobal onsetspeedof instability.

B. Analysis and Simulation Methods

Nonlinear simulation studies typically consist of extensive studies involving numerous

variations in model parameters and excitation forces. These studies begin with the best available

estimates of these parameters and forces. One beneficial approach identified in this study is to

simulate the model with no excitation (homogeneous case) except random noise. The results of

this simulation provide a bound on the speed range in which limit cycle is possible with the

excitations applied. In addition, the amplitude for this case bounds the limit-cycle amplitudes,

and the frequency is near the frequency obtained under general excitation. These bounds provide

a basis for determining whether extensive investigation of limit cycle is needed.

The important benefit of applying representative random noise excitation was clearly

evident in this study. Without perturbation, many significant occurrences of limit cycle will be

missed. It is also important for the perturbation to be realistic so that conclusions regarding

comparisons with test data will not be erroneous.

It became evident during the conduct of this study that simulations must be conducted for

representative time durations. The transient growth of a limit cycle or the transition between

subharmonic entrainment and limit cycle might easily be missed with short durations.

C. Suggested Future Research

While many important conclusions were reached in this investigation, there remain many

unanswered questions and opportunities for further work. As with any analytical and numerical

investigation, it is important to obtain experimental verification. The engine test data provide

some verification for this work; however, a laboratory experimental program with well-defined

conditions and adequate instrumentation would provide much better verification of the

fundamental assumptions and conclusions. With regard to the HPFTP model, improvements in

the certainty of the model parameters would simplify investigations and correlation with test
data. Even with better parameter data, however, absolute certainty in parameter values is

impossible. Therefore, an extensive parametric study of the HPFTP conducted in light of the

results of this research would provide important new insight into the characteristics of the actual

machine. This should include a penetrating review of the extensive data base of engine tests.

With regard to test data interpretation, although the threat of divergent instability cannot

be ruled out when subharmonic entrainment occurs, it may be possible to deduce a qualitative

margin of stability from its occurrence. The subharmonic response analyses conducted for the

simplified model indicated that the subharmonic ceased to exist above a threshold speed that

was near, but below, twice the linear (zero deadband assumption) system resonance. The

specific value depended on the system parameters. If subharmonic occurs in the response, the

system must be operating below twice this resonance. If the destabilizing forces are known to be

characterized by frequency ratios less than one half, then the global onset speed is known to be

greater than twice this resonance. An investigation should be made into the potential for

developing such an indicator of stability. Development of analytical tools for the complex model
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which are analogous to the homogeneousequilibrium and subharmonic responseharmonic
balance methods applied to the simplified model would facilitate an investigation of this. These

tools would provide characteristics and ranges of occurrence of the limit cycle and the
subharmonic response without requiting costly simulations.

Finally, a word about the basic modeling assumptions made in this work. The assumption

was made here that the rotor was supported by a combination of linear and nonlinear support
elements. The nonlinear support elements were treated as piecewise linear elements in radial

deflection with only two linear regions (i.e., one break point in the load deflection curve). One

significant situation that cannot be treated using this assumption is that of rotor-stator rubbing.

A model of rubbing interaction by itself is very similar to a bearing with deadband. The stiffness

and the clearance are usually larger than for a bearing and an addition force is included; the

tangential friction force. This interaction could be handled with the bilinear assumption with the

appropriate additions for the friction. However, the difficulty arises when there are bearings with

deadband and rub with a much larger clearance (or deadband). This combination requires
multilinear approximations. In a realistic model such as the HPFTP, these effects would be

distributed as well. The implications of this for the results and conclusions presented here would

be to introduce an additional level of potential equilibria and limit cycle instability. For example,

for speeds beyond the global onset speed of instability in the current model, the amplitude of the

vibration would grow until the rotor began to rub on the housing. This would, then, create a new

limit cycle at a higher amplitude with its own global stability limit. While general results can be
inferred by scaling the results already obtained, the application of these results to a realistic

model such as the HPFTP require careful scrutiny. The HPFTP model examined here did not

include the rub model and it produced results similar to test data. However, this might also be
accomplished using a very different "recipe" of parameters (representing a less stable condition)

which includes the rub model and its amplitude limiting effects. In order to assure that erroneous

conclusions are not drawn regarding the HPFTP, or any machinery that is known to rub, the

parametric study discussed above should include models of rubbing interaction. This should be
anchored to reality by closely examining the wear which occurs in the test hardware due to

rubbing. The mechanical work done by the rub which occurs in the model should be compared with
the observed wear. This requires the development of material wear models which relate the work

to estimated wear. In addition, the power loss due to the rub should be compared to total

turbopump power and its impact assessed using an overall engine system model. This would

determine whether the power loss would be observed in the engine performance and, if so, the

test data related to engine performance should be examined. These reality checks (wear and

power loss) would provide the guidance needed to determine which assumptions and parameter
"recipe" most accurately represent the actual machinery.
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APPENDIX A

TURBOPUMP MODEL DEVELOPMENT

Introduction

A general turbopump model has been developed in order to carry out the numerical

studies in this investigation. This model has been implemented in a package of FORTRAN

computer programs that is referred to as the Turbomachinery Rotordynamics Analysis

Package. There are three basic components to the package: a linear eigenvalue analysis

provides stability and critical speed information; a linear forced response analysis provides

steady-state response to static and dynamic loads; and a nonlinear time domain simula-

tion provides the total solution (transient and steady-state) and incorporates important

non-linear effects such as bearing clearance (deadband) and seal rubbing. The simpli-

fied model developed in chapter II can be implemented using this package by specifying

the input data appropriately. This appendix covers the development of the equations of

motion for the model and the solution procedures employed.

Conceptual Model

The turbomachinery rotordynamics analysis package is based on a conceptual model

of a symmetric flexible rotor supported in a nonsymmetric flexible housing by flexible

connection elements. This is illustrated schematically in figure 104. The rotor is charac-

terized by its free-free normal modes of vibration. Likewise, the housing is characterized

by its free interface (no rotor) normal modes. One axial rigid body degree of freedom

is included for the rotor. This is included to couple with the axial component that may

be present for each housing mode. This coupling usually takes place across a hydrody-

namic thrust balance piston. Damping is added to the rotor and housing by specifying a

damping ratio for each mode. Gyroscopic effects are included as generalized forces on the

rotor and they create coupling between the rotor modes. The normal modes of the rotor

and housing must be predetermined using structural models or other available means.
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The connection elements are typically rolling element bearings and fluidic seals and are

characterized by stiffness, damping, and inertia matrices that can contain coupling terms

between orthogonal lateral axes (cross-coupling). In general, the elements of these ma-

trices are functions of engine power level. This is caused by such factors as centrifugal

loading on ball bearings and different pressure drops across fluidic seals. Since turbopump

rotational speed is also a function of power level the stiffness, damping and inertia co-

efficients can be expressed as functions of speed. These functions can be represented in

a number of ways. In its present form the package can use two methods to define each

function: a polynominal in speed, or a table lookup. The polynomial coefficients must

be pre-determined by curve fitting tables of data for each function. The table lookup can

use linear or Hermite cubic interpolation.

The equations of motion for the turbopump system are developed by deriving the

equations of motion for the rotor and housing separately. The forces due to the relative

motion across the connection elements are then added as generaLized forces acting on

the rotor and housing. The coordinate system used to define the model is an inertial,

right handed system with the x axis along the undeflected rotor centerLine. The y and z

axes are in orthogonal, lateral directions. The orientation of the y and z axes is usually

determined by the structural model of the housing since the rotor is symmetric. Care

must be taken to ensure that the proper algebraic sign is used for the rotation speed

based on the right hand rule for the coordinate system.

Rotor Equations of Motion

The rotor is treated as a collection of rigid bodies. The equations of motion for

the rotor are derived using Lagrange's equations. The kinetic energy, potential function,

dissipation function, and virtual work expression are first defined in terms of the physical

coordinates of the individual rigid bodies. These functions are then expressed in terms

of the rotor free-free normal modal coordinates. The equations of motion are obtained

by substituting these functions into Lagrange's equations.

The coordinate system used to define the motion of an individual rigid body segment

of the rotor is shown in figure 105. The x, y, z axes define the inertial reference frame.

The 5:, _, 2. axes define the body fixed reference frame. The Euler angles 0y, 0:, and 6_

are defined in the figure.
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The kinetic energy for the i th rigid body can be written as the sum of the translational

and rotational kinetic energies

1 • 2 1 w_, w_:_
T_= _m_(_i+ y_+ _) + _ _o_, g_, g_, gz, _o_, (A1)

wi, Izx_ Izy, Izz, w,,

where w_, wg, and w_ are the body axis components of the angular velocity. Since the

axis is taken to be the axis of symmetry and each body is considered to be a body of

revolution, the product of inertia terms will be zero and equation (A1) can be written as

1 -2 .o 1 2 1 w2
Ti= "_mi(xi + _l_ + z[)+-_I_,ws:, +-_It,(w_, + _,) (A2)

The angular velocity components w_,, wg,, and _oe, can be written in terms of the Euler

angle rates as follows

_,, = 0_,+ 0_,sin(0,,)

¢o9, -- 0y, cos(0z, ) cos(0z, ) -+ Oz, sin(0x, )

w_, = -t}u, cos(Sz, ) sin(0_, ) + _}=,cos(#x, )

Substituting equation (A3) into equation (A2) yields

(A3)

1 .= 1 1 _j2
Ti = _mi(xi + _}_ + _/_) + _I_, (0_, + _}y, sin(8_,)) 2 + _It,(O_, cos2(Oz,) + =,)

(A4)

The rotor will be constrained by the bearings to have small motion, therefore, the angles

8u, and 8,_ can be considered to be small quantities. Substituting Taylor series expansions

for sin(0z,) and co.s(8,, ) into equation (A4) yields

0 3

1 .2 1i 02 ia,O_:,Ou,(O=, 3T, = -_m,(_,+ 07+ _) + -_o, _, + - _' + )

1 Ia,O 03 1 0 = .)2+ _ (Oz,- z.____,+..)2 1 ., "2 (1- _'' +'"2 ' 3 • + -_It,O'., + -_lt,Ou, 2
(A5)
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Since the kinetic energy expression will be differentiated once in Lagrange's equations,

terms of second order in small quantities must be retained here. Neglecting terms of

higher order yields

1 .2 1 "2 1 • 82
Ti = _mi(x i + _ + ?._) + _Ia,ez, + Ia,Sx, Sv, Oz, + _I/,(82v, + z,)

The total kinetic energy of the rotor is the sum of the individual kinetic energies,

(A6)

T = _2 T, (At)
i

It is assumed here that the rotor is axially and torsionally rigid so that equation (A7)

becomes

T= _ m, +_m,(_)_+_ii 2)+_ I_, fl _
i

1 (z )+ _ _ I_,(o_,+ o_,1+ n Io,O_,o_,
i t

where f_ replaces _x.. Equation (A8) can be written in matrix notation as

(A8)

where

1 1 _ 1.T .T = -_M_ 2 + _TIa_ + _Tm_ + _z mz

"T
+ _6_It6y + 16_It6, + n®yI.®_2 (A9)
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and similarly for z, ®y, and ®,,

fi
(A12)

[ 1o]m 2 ...

m = . ". (A13)

° ° ° rt

and similarly for It and I,,.

The potential and dissipation functions will be defined in terms of the rotor physical

coordinates. Since the rotor is axially and torsionally rigid, only the y, z, ®y, and ®z

coordinates will contribute to these functions. The potential function is written

00y 14yy _yO,

1 z _,e,y _e,e, 0 0V= wT_w=_ 0 0 ,_ '_e,

Oy 0 0 _e_z _O_e_

{y}
®y

(A14)

where a represents the rotor stiffness matrix; the upper left and lower right quadrants

are identical (symmetric rotor).

The dissipation function can be more easily treated using coordinates that rotate

with the rotor at speed fi. The following transformation defines the new coordinates

where

r_ - sin(_t)
sin(fit) }cos(at)]{ w'wz (A15)

(A16)

(A17)
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r_ - ®(

In terms of the rotating coordinates r, the dissipation function is written as

(A18)

(A19)

G -- _I'TB i" (A20)

Differentiating equation (A15) with respect to time gives

[ cos(f_t) sin(f_t)] {-hy+ftWz}i" = I-sin(fit) cos(gtt)J 4_, -- _Wy

Substituting equation (A21) into equation (A20) yields

(A21)

G - _ *z - aWy [ sin(_t) cos(_t) J 0 B(

[ cos(flt) sin(at)] {-&y+nW_.}- sin(_t) cos(_t) "&z - _tWy
(A22)

where Bv and B( are identical and represent the damping matrix for the nonspinning

rotor. Equation (A22) can be rewritten as

1 _z "_- _"_Oy B Be(e( 0 O0 O_ "_- _"_Oy

G=_ _-fty _ 0 B_¢ Boo.. _.-f_y

{_)y- _"_0 z 0 0 Bs,¢ (_)y _'_0 z

(A23)

The generalized forces acting on the rotor are treated through the virtual work

expression. The virtual work is the product of a virtual displacement of a coordinate and

the component of a generalized force acting on the coordinate. The virtual work can be

written as
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+(Tx,_:, + Ty,_, + Tz,_,).(50:_,_x, + 50_,_, + (50_,_}_:)] (A24)



where_qis a unit vector along the q axis. Equation (A24) can be simplified to

(A25)

From figure 105, the unit vector dot products are determined to be

_,.,. _, = - sin(ey,) _ -_y, (A27)

6,, . _.: = cos(0v, ) _. 1 (A28)

for small angles. Substituting equations (A26) - (A28) into (A25) and simplifying yields

(A29)

The torques Tv, and T_, will be linear functions of the displacements By, and #z,. Since

these angles are considered to be small quantities, the products of the torques Tv, and

T_ and these angles become proportional to terms of second order in small quantities.

Neglecting terms of second order and higher in small quantities simplifies equation (A29)

to

(A30)

The kinetic energy, potential function, dissipation function, and virtual work have

all been defined in terms of the rotor physical coordinates y, z, ®y, and ®,.. These

functions can be expressed in terms of the rotor free-free modal coordinates using the

following transformations
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y = Cqy (A31)

Oz = _qy (A32)

z = ,I_q_ (A33)

®y = -_qz (A34)

where _ is the rotor free-free modal displacement matrix, _I' is the rotor free-free modal

rotation matrix, qy is the rotor free-free modal coordinate vector in the y - z plane, and

q_ is the rotor free-free modal coordinate vector in the z - x plane. It can be noted that

the rigid body modes must be included in ¢ and _I,. Substituting equations (A31)-(A34)

into equation (A9) yields the kinetic energy in terms Of rotor modal coordinates:

l. T
T=IM_2+_WIa_÷_qyOTmO(:ly÷l_iT_TmO_, 2

l.T T • I.T T •
+_qy_ It_qy+_q_ It_q,-a_IT_TIA_qy (A35)

The rotor free-free normal modal vectors are orthogonal and properly scaled so that

_TmO + _I'TIt _I' = I

Therefore, equation (A35) reduces to

(A36)

where

1 _ 1. T . lT = _Ma_ _ + _/TIa_ + _qyqy -}- _zT_z -- _Trqy (A37)

r = _WIa_ (A3S)

Substituting equations (A31)-(A34) into equation (A14) yields the potential function in

terms of rotor modal coordinates:
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( )TL00lqy r,<,,,,,<,,_, o°
1 _qy l _o,,v _e_)o., 0 _qy

V=_ _q, ].0 r..,.. _,o, _q,

-_q= 0 K.evz _e_ovJ -_Pq=

Due to the orthogonallty and proper scaling

(A39)

_O_ y t_O_ O_ _I/ = con
(A40)

and

[,I. w -- _n (A41)

which gives

{ °]{q,11 qy Wn

V = _ qz 0 w qz

where

2 n2

0,) n = . ,

COnk

(A43)

Substituting equations (A31)-(A34) into equation (A23) yields the dissipation function

in terms of rotor modal coordinates:

1 _(_ty - flq,) /Bo,:, Bo,:e< 0
G = '_ ¢(4,- _qy) | 0 0 B(( 'I'(Clz- _qy)

-,I,(4= + flqy) o Be,_ -z/(EI_. + ftqy)
(A44)

If the rotor damping is assumed to be proportional damping, the damping matrix can be

diagonallzed by the modal matrices just as the stiffness matrix was diagonalized. This

allows equation (A44) to be written as
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where

a ---- _ Clz -- flqy o]{ y+oqz}
2(wn Clz -- _qy

(A45

-2Gw, 1 0 ... 0

0 2_2w,_ ... 0

: : ".. :

0 0 ... 2(k_k

(A46

Substituting equations (A31)-(A34) into equation (A30) yields the virtual work expression

in terms of rotor modal coordinates:

5W = F_ix+_®TT×+(_qyT((I)TFy + _TTz)+SqT[_TF,- k_T(Ty + Tx_fqy)] (A47)

where

T;,=

Txl 0 ... 0

0 T_ ... 0

: : ".. :

0 0 ... T_:,

is the diagonal matrix formed from the vector Tx.

(A48)

The kinetic energy, potential function, dissipation function, and virtual work expres-

sion are now in the form desired for use with Lagrange's equations. Lagrange's equations

can be written in the following form

d (OT) OT cOl" cOGd--t _ - cOq---_+ _ + _ = Q' (A49)

where Qi is the generalized force acting at coordinate qi and is implicitly defined by

5W = Z QiSqi
i

(AS0)
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Substituting equations(A37), (A42), and (A45) into equation (A49) and comparingequa-

tion (A47) with equation (A50) yields the following set of equations of motion for the

rotor:

M_ = F. (A51)

I_ - _Tl"qy - = Tx (A52)

Cly + _rqz + Wn2qy -{- 2_O3nCly + fl2_'wnqz = _TFy + _TTz (A53)

_lz - firmly +w_qz + 2(Wn_lz - _2¢Wnqy - _Fqy = ,I>TF_ - _I'TTy - _I'TTx_qy (A54)

Neglecting second order terms for small angles, it can be seen from equation (A52) that

= Iafi (A S)

However, since the rotor is torsionally rigid, all elements of the vector _ are equal, and

therefore

T x = FtIa (A56)

Substituting equation (A56) into equation (A54) yields

2
fiz- firmly+ w.qz + 2(w.dlz - _2_'Wnqy -- _TFz - _'TTy (A57)

Rewriting the complete set

Ijl = Tx (A58)

= __F_ (A59)
M

2 ,TFy + _I,TT..Cly + 2_Wn¢ly + _rClz + Wnqy + F/2(Wnqz = (A60)
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_Iz+ 2(w._l_ - _r_ly + w_q, - _12_CQnqy -- <I'TFz - _TTy (A61)

Equations (A58)-(A61) are the rotor equations of motion. Equation (A58) defines

the torsional motion. The rotor speed f/ will be a specified function of time, therefore,

equation (A58) will not be needed. The forces and torques Fx, Fy, Fz, Ty, and Tz contain

the linear and nonlinear forces due to the elements connecting the rotor to the housing

as well as externally applied forces.

Housing Equations of Motion

The equations of motion for the housing are derived in the same manner as for the

rotor with the following exceptions. The housing doesn't rotate so that all terms involving

fl are absent from the housing equations. Also, the modal matrix used to diagonalize the

housing equations is derived from fixed-free boundary conditions. However, the housing-

rotor interface coordinates are free. The housing is not symmetric and its modes are not

entirely planar so the modal coordinates can not be separated into y and z coordinates as

in the case with the rotor. With these exceptions noted, the housing equations of motion

can be written directly

2 _ _)T <I)TFh _{..<I)TFh .{_qlTyTh, + _itT_i + 2(hW, hl5 +wah p h,,Fh, + h, a. h Th. (A62)
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Combined System Equations of Motion

With the rotor and housing equations determined, the system equations of motion

can be written,

{/[0000]{/[00 00ely "_- 0 2(rWnr fir 0 (]y _- 0 W2nr _-_2_rWn, 0

_1, 0 -fir 2(,.w,, 0 _1, 0 -fl2_rw., w2 0
Ill r

0 0 0 2(hCQnh I_ 0 0 0 W 2
nla

M

_TFy -{- _ItTTz

<I)TFz - _IITWy

T T T xI/T
Fh, + Ch Fl,_ + CI'h Fh , + _hTh, + h Th,

qy

qz

P

(A63)



At this point the rotor and housing appear to be uncoupled. However, the force vectors

on the right hand side of equation (A63) are partially due to rotor-housing interaction

and can be expressed as functions of the modal coordinates. First, the forces are written

in terms of physical coordinates:

F_ = -k_(z - zh) - c_(Y - Yh) (A64)

Fh, = -F_ (A65)

where kz and Cz are the axial stiffness and damping coefficients connecting the rotor to

the housing;

Fy - -kyy - Qyz + kyYh + QyZh - Cy_ - CQ_ + CyYh + CQyZh

--my_, --MQyZ + my_'h "JrMQrZh "4-FEr, A- Fny (A66)

Fz = Qzy - kzz - QzYh + kzzh + CQ,:_ - czz - CQ,_'h + Cz:_h

+ MQ,:p - m+_ - MQ,:_h + mzzh -JrFEr, -{-fn, (A67)

Fh, = -(Fy- Fzr,)- Fzh,

Fh. -- -(F z - FEr .) - FEh"

where the coefficient matrices k, Q, c, CQ, m, and MQ, are diagonal;

(A68)

(A69)

T.. = -kt®z + ktOzh (A70)

Ty - --ktOy + ktOyh (A71)

Th, = -Tz (A72)

Th, = -Ty (A73)
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wherethe coefficientmatrix kt is diagonal. The external excitation forces(FEr and FEb)

and nonlinear interaction forces(Fn) will be defined in later sections.

The physical coordinates(z, y, z, etc.) can be replaced by the modal transformation

given by equations (A31)-(A34) for the rotor and the following for the housing:

Xh = ffh.P (A74)

Yh : _hyP (A75)

®zh = _h,,P (A76)

Zh = _h,P (A77)

Oy|, = _I-'hyp (A78)

Performing these transformations and substituting the resulting force expressions into

equation (A63) yields:

kx Cx .

= -_-(x - ¢I:'h,, p)- -_-(z - ¢I'h,,t 3) (A79)

9.
(iy + 2(rWn,Cly + fl_Clz + Wncqy + Q2(rWn, qz

= --_Tky_qy -- _TQy_qz + _Tky_hyp + _TQy_h.p

-- ¢I_TCytI)Cly -- <I)TCQy <I)Clz-Jr-tI)TCytIahy I_ "_-¢I)TCQy <I_h.b

- _Tmy_ly -- _TMQy _iz + _Tmy_hyP at-<_TMQy _h, ia

-- K_tTkt_qy + _Tkt_h,p + ffT(Fzry + Fn,) (A80)

-- _TQz_qy - 6_Tkzc_qz - ¢_TQz_h_ p + _Tkz_h.p

+ 'I'TCq 'I'_Iy - ,I,Tc.,I, fi_ - ,I, TCq 4,h,I _ + 4'Tcz'I'h.I_

+ _TMQ.<I_qy -- <I)Tmz_lz -- <I)TMQ _hyi_ + _Tmz_h, ia

- _Tkt_qz - ff2Tkt_hyP + oT(FEr, + Fn,) (A81)
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2

+

+

+

+

• Tyky¢I)qy + 6_ Th, Qy<I'qz- <I'_kyq'h,p - q'T QyOh. p

<I',T Q_'I_qy + 'I',T k..'I'q_ + <I'_ Q,'I'h,,p- 'I'_ k,<I'h.p

+_ c,,¢+t,,+¢.,,_ cQ ++,_- ¢:, c,,+,,,f.- +:, cQ +,,.f,

+_ cQ ,+,_y+ ,+_,:z+,_..+ '+_.cq.,+,,._,- ,+...-rc..¢,,.i,

Oh"r,my <I,/:iy + <I,_ MQy <I'_. - Oh"r,my Ohm, i5 -- Oh"r, MQ,, Oh. i6

<I:,hTMQ ,:I,/:i, + <I,hT m+ ,I:,/:i.,:+ ,I:,_UQ,'l:'h,,i5- <:I:'hTm,:':I'h.i5

+h"r, kt+qy - +,Tkt+h,P -- _t'T kt_q"-h, - _I'_kt+h,p

T F <I>T (FEb, + Fn,) (A82)'I'h,( z,,, + F.,) - h.

Each force expression on the right-hand side of equations (A80)-(A82) should be recog-

nized as the sum of the generalized forces due to the physical forces, i.e.,

N

,,:+.1-.+-,= Z ¢7_r_,
i=1

(A83)

where cT represents the i th row of _. These equations can'be written more compactly

by combining the coefficients of the generalized coordinates on the left-hand side of the

equations as follows:

{+}{+}M Cly + C _ly + K qY
Clz l_Iz qz

where

{ 0 }¢Ti*T(FEr, Jr- Fn,)

-- 62T(FEr, + Fn,)

--¢,Ty (fEhy + Fn_,) - +T (FEb,h, + Fn,,)

(A84)
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._.

I 0 0

0 I + _Tmy_ _TMQy _

0 ( --_hTmy__hTMq_] ( cI'T"M Q"cI'+ _ m,'I' /

0

I --_Tmy_hy 1
_TMQy_h,

{ "TMQ,'h. )_ _l,Tmz_h,

T
I+<_h my_hy

T

+ _h, m,:I'h, (A85)

__.

0 0
M

° II+ 1jr. _TCy< _ + cI_TCQy _I_

i:+ / /0 _TCQ c_, + _TCz <_

I: }I--
h_ Cz

_I_TCQy _h,

[ _Tcq._hy ]- _Tcz _h,,

2(l,wnh + _T, CY {_h,

+ +_,cQ,+,,.- +'_,cq.+,,,

(AS6)

and
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K_

M

032
nr

+ _Tky<_

+ _Tkt_

-- _hTky_

-- x_hT.kt+

032
11 r

+ _Tkz_

+ _Tkt_

_T Qy<_
hy

- <I,_kz,I,

-- _iT kt _lJ

-- <_Tky _h,

-- <_TQy_h.

-- _Tkt _]th,

_TQz_h,

-- _Tkz <_h,

+ _Tkt tXshy

ChT ky<I)hyCOnh +

T Qy_h, T+ _h, - #h,Q*CI'h,

+ <I>hTk,,<I:',,,, + +:xk..+.<:I>h,,

+ q/TktqJh,h, + xXs:ykt_h_

(A87)

Each of these system matrices is, in general, a function of speed since the coefficient

matrices are functions of speed. The right-hand side of equation (A84) contains only

externally applied forces and nonlinear interaction forces. These will be discussed next.

External Forces

There are four external excitations that can be considered using the rotordynamic

analyses package: rotor mass unbalance forces, static side forces, white noise forces, and

pulse perturbation forces. The first three represent actual forces in the turbopump. The

pulse perturbation is a tool used to study the characteristics of the nonlinear system.

The unbalance forces are the inertia forces due to the acceleration of the eccentric

mass of the rotor. Since they are inertial, they are applied only to the rotor. The y and

z axis components are +90 degrees out of phase, depending on the direction of rotation.

The side forces are due to non-uniform circumferential pressure distributions that occur

in the turbines and the pump discharge volutes. These forces are applied to the rotor

and the housing with equal magnitude, but opposite direction. The white noise forces

represent the various random excitations that occur in the turbopump. Random pressure

fluctuations in the turbines and pumps and external acoustic noise are examples. Noise

can be applied to the rotor and housing with equal but opposite forces, as with the side

forces, or to the rotor and/or housing independently. The pulse perturbation is applied
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at only one axial position and is applied to the rotor only. It can be defined as a square

pulse or a short duration oscillating force with a prescribed frequency.

The unbalance force is defined by specifying the product of mass and eccentricity

along with the phase for each axial location. For one location, the force is written as

where

Fuu, = (ma)i _2 cos(0 + ¢i) + (ma)iasin(O + ¢i) (ASS)

Fuz, = (ma)iO _ sin(0 + ¢i) - (ma)ia cos(0 + ¢i) (A89)

j0'J0_8 = a(p)dpdr (A90)

The side force is defined by specifying the y and z axis components for each axial location

as quadratic polynominals in pump speed

Fs_. = Cuo. + _Cy,, + _2Cu2, (A91)

Fs,, = C=o. + _C_1, + fl2C=2, (A92)

The white noise forces (FN_,, FN_,,, Fgh,., and Fyh,,) are defined by scaling a uniform

random number sequence with range (-1,1) to a desired range. The pulse perturbation

is either of the form

or

T

T

(A93)

(A94)

r,:,_,- A_¢os(,+_)[,5(_-,-)- ,_(_-(:T+T))] (A95)
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where

Fp_ = Ap_sin(wpt)[6(t- r) - 6(t - (T + r))] (A96)

{ 1 if t > 0 (A97)5(0= 0 if t<0

The total of all external excitation forces can now be written as

FE.., = Fsu, + FN_., + Fuy, + 5ikFp_k (A98)

FE_., = Fs_, + FN_., + Fu_, + _ikFp.. (A99)

FF_h_, -- Fsu, + FNh,, (AIO0)

FEh.,= Fs=, + FNh., (A101)

Nonlinear Interaction Forces

Rotor-housing interaction forces are functions of the physical coordinates at partic-

ular locations. The linear interaction forces can be expressed as functions of the general-

ized coordinates using coordinate transformations. This was done to arrive at equations

(A79)-(A82) and (A84). The nonlinear interaction forces, however, cannot be treated in

this way. At each instant in time, the generalized coordinates must be transformed into

physical coordinates. The nonlinear forces are then calculated as functions of the physical

coordinates. The physical forces are then transformed into generalized forces and applied

to the generalized coordinates.

There are three generic types of nonlinear force elements that can be represented

using the rotordynamics analysis package. The first is bearing clearance or deadband.

For this type of element, no force is produced until the relative displacement between

the rotor and housing exceeds some specified clearance. After this clearance has been

exceeded, the force is represented as a piecewise linear spring and damper. Figure 106

illustrates the piecewise linear spring force versus radial deflection. Figure 107 shows the

relative displacement and velocity vector diagram which is used to aid in writing the y
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F

Figure 106.

k 2

kl

k 0

Deadband nonlinear element piecewise linear restoring force
versus radial deflection.

and z axis components of the nonlinear force. The element can be conceptualized as

shown in figure 108. This figure shows a separate spring damper subelement for each

clearance. The coefficients for the second and third of these are defined to be the changes

in the coefficients defined in figure 106. This makes it possible to write the force equation

as if the three parts were independent when they are actually not (figure 109). Referring

to figure 107, the actual displacement and velocity components across a given subelement

are

ye_ = y - _i cos 8 (A102)

ze, = z - 6i sin 0 (A103)
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Y

Figure 107. Relative displacement and velocity vector diagram for
deadband nonlinear element.
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Figure 108.

• • •. °,
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61 < 62
• ". =.

%, ,. %.. °. ", "• •

Conceptual representation of deadband nonlinear element.

Heavy-lined circles represent massless rings.
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Figure 109.
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Superposition of subelement piecewise linear force functions to yield
overall function for deadband nonlinear element.
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y_, = _ + 3i/_ sin 0 (A104)

z,_. = z, - 8i0 cos/9 (A105)

where

and

_ y_ - z#
r2 (A106)

r = v/y 2 + z _ (A107)

Recognizing that

and

cosO = -Y (A108)
T

Z

sin 8 = - (A109)
T

equations (A102)-(A105) can be rewritten as

Ye, = y(1---_) (AllO)

(Alll)

Ye, = y+ _/_z (Al12)
T

z_, = _- _#y (Al13)
T

With these defined, the force components can be written directly for each range of dis-

placement. For r < (50,
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Fy=0 (All4)

F, =0 (All5)

For 60 <r<61,

_y : --kyo Yeo -- Cyo _/e o (Al16)

Fz - -kzoZeo - C,oZe o (All7)

For61 < r<62,

F_ = -(G, - Go)Y_, - (%_ - %o)Ye, - Go Y_o- Cyog_o (All8)

= -(G, - Go)Z_, - (c_, - c_o)_, - GoZeo -- C_o_o (All9)

For 6 2 < r,

- (%, - %o)9e_ -- kyoY¢o - %oY¢o (A120)

- (cz_ - Czo)_el -- GoZeo -- C_o_o (A121)

Substituting equations (All0) - (All3) for each range of displacement into equations

(All6) - (A121) and simplifying yields the following: For 60 < r < 61,

F_ = -k_0 (1- 6O)y_%0 (fl + _-_°rOZ) (A122)

- ,o),_

_] (_1

/%o61 - 6o [[9 (1+
r

(A123)

(A124)
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Fu = -k_ [1 _ __`52(1
r

[ *_- %2 _) + --(1
T

k_, ,52 - ,51 kyo `51 - `5o_]
] J y

ky 2 62 k_: &

%, & - `51 %0 `51 - `50 1

c_ `52 c_ g )OzJ

T % `52 cz2 `52 )@

Each of these force expressions is of the form

(A125)

(A126)

(A127)

F_ - -k_(1-a_!)y-c_(i]-t-_y!Oz) (A128)

F_ : -k:(l -a_!)z-cz(t- fl_Oy) (A129)
r

The stiffness and damping coefficients in these expressions are, in general, functions of

speed.

The second type of nonlinear force element that can be represented is rotor-stator

rubbing. Rubbing is very similar to bearing clearance in that there is an abrupt stiffness

increase when contact is made. The rubbing force element contains the additional effect

of friction which produces a force tangential to the contact surface. The rub element

can be conceptualized as shown in figure 110. It can be modeled using two different

formulations. The first is the more conventional and simpler of the two. First, the radial

force is calculated neglecting the effect of the frictional force:

C

FR = -kR(Irl- c)= -/cRlrl (1- T_) (A130)

Then the tangential force is determined as the product of the radial force and the coeffi-

cient of friction:
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Figure 110.

(b)

Conceptual model of rub nonlinear element. (a) Undeflected position.
(b) Deflected position.
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The assumptionismadeherethat the contactsurfacenormal vector remains collinear with

the radial deflection vector. This assumption may be valid for low friction or light contact.

In general, however, the contact surface normal will be collinear with the resultant of the

radial and tangential forces. This is illustrated graphically in figure 111. A formulation

including this effect was developed by yon Pragenau [19]. A new vector S has been

introduced to define the surface displacement. The total force is equal to the stiffness

multiplied by the surface displacement vector

F = -kRS (A132)

This can be expressed in terms of the contact surface normal and tangential components

as

F .-- -FNe N -- _]2Ne T (A133)

The angle between the force F and the surface contact normal eN is then

7 = tan-1 /z (A134)

The displacement vectors are redrawn for clarity in figure 112. All three sides and one

angle are known, therefore, from elementary trigonometry, we have

from which

[r[ c

sin(rr - 3') sin fl
(A135)

Noting that

C C

sinÊ = ]_ sin0r - 7) = ]7[ sin7
(A136)

# (A137)
sin7 = sin( tan-I #) - _+ #2
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Figure 111. Rub model vector diagram.
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S

Figure 112. Rub model displacement vector diagram.

and that

_ = r-;_-(_-7) =7-_ (A138)

yields

a = tan -1/l - sin -1 ]r I

The force F can now be expressed in terms of radial and tangential components.

(A139)

F = -kRS = -ka(r- c_N) (A140)

but
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eN = _ cosa -- _e sin a (A141)

therefore

r =-kR[(r- ccos ) r +csin (A142)

From equations (A139) and (A136), noting that

it can be shown that

cos fl -- 41 - sin 2 (A143)

_i c2 _2 c #2cosa- 1 Ir] 2 1+#2 + lrll+#i (A144)

and

c2 #2 c ## 1 (A145)
sina = _ Ir] 2 1 + #2 Irll + #2

Substituting (A144) - (A145) into (A142) yields the radial and tangential force compo-

nents in terms of the radial displacement r

c 1 _/ c2 g2 c2 #2F - -kRlr[ 1 Ir] _ vl Jr[2 1 + _t2 Irl2 1 + _2

- _kRlrl Irl _ 1 Irl2 1 + #2 Irl 2 1 + .=

er

eo (A146)

The third type of nonlinear force element is the floating ring seal. This is a very

complex element since it involves an additional mass suspended from the rotor and in-

teracting with the housing through friction. Since this element was not used in any part

of this study, the details of its formulation will not be included here.

Eccentricities are geometric offsets from the normal centerline of the housing (stator)

or rotor. The are not inherently nonlinear effects, but require the same transformations

143



(from generalized coordinates to physical coordinates and back) as the nonlinear force

calculations; therefore, they are calculated along with the nonlinear forces. Their most

pronounced effects occur when nonlinearities are present by altering the deflections re-

quired to reach a certain threshold in the nonlinear function (i.e., exceed a seal clearance

and rub). Their effects are included by adding the offsets to the relative deflection,

velocity, and acceleration expressions as follows:

yr_l = yr - yh + er cos(8 + ¢_) - eh,

z,.et = z,. - zh + e,. sin(8 + ¢_) - eh,

Y_et = y_ - 9h - eer sin(e + ¢_)

_et = _ - _h + _e_ cos(0 + ¢_)

9tel = _)r - Yh -- @Er sin(O + Cr) -- _2_r COS(8 + ¢r)

where 8 is the angular position of the rotor and for constant speed cases

(A147)

(A148)

(A149)

(AI50)

(A151)

(A152)

0 = wt (A153)

Solution Procedure

The equations of motion for the system have been defined in terms of generalized

coordinates associated with the component modes of the rotor and housing. The develop-

ment assumed that a complete set of component modes would be used to transform from

the physical coordinates to the generalized coordinates. If a reduced or truncated set of

modes is used (thereby reducing the order of the model), the coordinate transformation

(equations (A31) - (A34) for the rotor, and equations (A74) - (A78) for the housing be-

come approximations and error is introduced into the model. If a sufficient number of

modes is retained, the magnitude of the error can be made small. The error can be further
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reducedfor a given number of retained modesby a methodknown ascondensation. This

method partially utilizes the modesto be eliminated rather then simply truncating them.

The method is developedfor this application in reference20. In order to avoid possible

influenceson the results, condensationwasnot usedin the numerical investigations of

this study.

The equations of motion given by equations (A84) - (A87) are a set of coupled,

nonlinearsecondorder differential equations. The nonlinearities in theseequationsarean

containedin the rotor-housing interaction forces. Theseequationscanbe linearizedin two

ways. First, the nonlinear force expressionscanbe linearizedabout someoperating state

as describedin chapter III. The state is determined by running the nonlinear transient

simulation until a specifiedtime is reached.Second,the nonlinearities canbe neglected.

For the bearing clearancenonlinearity, this meansthat the clearanceis assumedto be

either zero or infinite. The stiffness is then linear and can be handled like the other

linear stiffnesses. For the rubbing nonlinearity, the clearance is assumed to be infinite so

that rubbing never occurs. The linear set of equations can now be solved using standard

techniques.

The stability analysis program obtains the homogeneous solution to the equations of

motion (A84):

where

M_+C_+Kr/= 0 (A154)

qy

7/= qz

P

This can be put into first order form by defining

(A155)

and writing

{¢_ } (A156)/3= 77
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Letting

[ ] [_io]o I 3+ B=o
M C 0 K (A157)

(A158)

and rearranging yields

[oI o] (A159)

= -p-1R/3 (A160)

Assuming

= Be _'t (A161)

then

= ABe ;_t (A162)

Substituting (A161) and (A162) into (A160) yields a standard eigenvalue problem

AB = -p-1RB (A163)

where A is an eigenvalue and B is an eigenvector. It should be noted that

p-i= [ -M-1C M -1]I 0 (A164)

so that only M (whose dimension is half that of P) must be inverted. Many times

in practice the interconnection forces defined by equations (A66) and (A67) contain no

inertia terms. In these cases M becomes the identity and the inversion is trivial.
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The eigenvaluesand eigenvectorsare, in general,complexquantities. The eigenvalues

provide the natural frequenciesand degreeof damping for each mode in the system.

Damping canbe representedasa critical damping ratio for eachmode using the relation

¢'i= -An, (A165)

V/,_, + ,_Ii

The eigenvectors (or modeshapes) give the relative shape of the deformation that oc-

curs for a given mode. Since they are complex, displaying the vectors in a physically

meaningful way is not entirely straightforward. For a given eigenvector B, it can be seen

from equation (A156) that the lower half represents the displacement of the generalized

coordinate, hence

Bi I iQi _, (A166)
= tN, J

This part of the eigenvector (N), which is expressed in generalized coordinates, must be

transformed back to physical coordinates using the transformations given in equations

(A31- (A34) and (A74)- (A78). Also, if condensation has been performed, the associated

transformations must be reversed. This yields a comp]ex eigenvector expressed in physical

coordinates with the form

I

Wi = _ ! (A167)

' x

y

®z

Z

®y

Xh

Yh

Gzh

Zh

E)y h

The eigenvectors and eigenvalues were used in equation (A101) to separate the variable _3

into spatial and temporal factors. The transformations performed on _3are now performed

on B which, from equation (A161) yields
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w_t) = Wle x't

This can be expanded in terms of real and imaginary parts as

wj(t) = [Wl_ + jWi,]e (xn'+jx1')t

= [Wx_ + jWi,]e_'""[cos(A1,t) + jsin(At, t)]

= [Wpq cos(Al, t)- WI, sin(Al, t)]e _s't

+ j[w sin(A ,t)+ w,, ' (AX69)

Since w(t) must be real, only the real part is needed, so that the motion of the system

due to a given mode is

w,(t) = w,, ' (A170)

The exponential term determines the rate of decay or growth of the motion for the

mode. The modeshape characteristics can be displayed by plotting the motion through

one period and neglecting the decay term. This will yield a three dimensional figure;

however, the lateral motions (Yi, zi) at particular axial locations are usually of primary

interest. For example, the rotor motion at the k th location for the i th mode will be

Yk = YR,, cos( AI, t ) - Yi_, sin (Aj, t) (AI71)

zk = Zn_, cos(Al, t) - Z;k, sin(Ai, t) (A172)

To display these motions, it is necessary to let t vary such that )_i,t covers the range from

0 to 2r. The motions given by equations (A171) and (A172) will trace out an ellipse

in the y- z plane. Housing motions and relative motions (rotor minus housing) can be

displayed in an identical manner. It should be noted that the display is more than just

the eigenvector. It is the transient motion of the vector (without the decay) through one

period.
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The forced response program obtains the particular solution to the equations of

motion. The excitation must be harmonic and can be in one of three forms. The first

and most often used form of excitation is due to mass unbalance of the rotor. This

excitation is harmonic at a frequency equal to rotational speed. Since the force vector is

rotating, the y and z axis components are +90 degrees out of phase, depending on the

direction of rotation. Since it is inertial, it is applied only to the rotor. The second form

of excitation is static (zero frequency) and is due to circumferential pressure variations

in the turbopump. It is applied to the rotor with an equal but opposite force applied

to the housing. It is also distributed along the length of the rotor. The third form

is due to rotating eccentricities in the interconnection elements. The magnitude of the

force is equal to the product of the eccentricity and the element's stiffness. For rotor

eccentricities, the frequency is equal to rotation speed. For the rolling element bearings,

the ball or roller train can become eccentric due to variations in element size and produce

an eccentricity rotating at the speed of the rolling element separator (cage). The force is

applied to the rotor with an equal but opposite force applied to the housing. The y and

z axis components are -/-90 degrees out of phase, depending on the direction of rotation.

All three forms of excitation are discretely distributed along the length of the rotor.

The equations of motion can be written for these types of excitation as

M(fl)/_ + C(fl)7) + K(fi)r] = Q(wt) (A173)

where the dependency of M, C, and K on rotational speed (_) has been emphasized and

w = pf/ (A174)

Depending on the form of excitation, p will be 1, 0, or equal to the rolling element cage

speed ratio. Since the equations are linear and a harmonic excitation is applied, the

particular solution will be harmonic. The excitation can be written as

(A175)
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where _[ ] denotesthe real part. The generalizedforce vector Q can be defined by

comparisonwith the right hand side of equation (A84):

{ 0 }_,'rFE_, (t)
q(t) = _,TF_.(t )

--_ T FEh, ($)--¢hT FEb. (t)h¥

(A176)

where FEry, FEr., FEh_, and FEb., are the excitation forces for the rotor and housing

along the y and z axes. For the unbalance excitation

rE_,_(t) = (ma)_ 2cos(at + ¢_) (A177)

FErmi(t) = (ma)ifl 2 sin(fit + ¢i) (A178)

For the static excitation

rEh,_(t)= PEh._(t)= O. (A179)

FEr, = Fs, (A180)

FEr. = Fs. (A181)

Fro,, = FEr,, (A182)

FEb. = F_r, (A183)

For the eccentricity excitation

FEr,i(t) = kiei cos(pfit + ¢i) (A184)

FE..i(t) = kiei sin(p_t + ¢i) (A_85)

(AlS6)
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FEh, i(t) = FEr, i(t) (AlS7)

From (A175) and (A176)

FE(t) = R[(R + jI)e jpnt] = Rcos(p_t)- I sin(pflt)

For unbalance excitation, from equations (A177) - (A178)

Rr, i = (ma)igP cos¢i

I,.vi = (ma)ifl 2 sin ¢i

R_,i = (ma)i_22 sin ¢;

I_,_ = -(ma)il22 cos ¢i

Rh, = Rh, = Ih, = Ih, = O.

For the static excitation, from equations (A180) - (A181)

Rr'i=Fsy'=lFs'lC°S[ tan-l(Fsz---2-'_ ]\Fsy, /

Rh_ i : Rrvi

Rhzi = Rr, i

and It, and Ih, are of no consequence since in equation (A188

sin(pgtt) = sin(0t) = 0.

For the eccentricity excitation, from equation (A184) - (A185)

(A188)

(A189)

(AI00)

(A191)

(A192)

(A193)

(A194)

(A195)

(A196)

(A197)

(A198)
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R_! = kiwi cos¢i (A199)

Irvi = kiQ sin ¢i (A200)

Rrzi = kici sin ¢i (A201)

Irzi -- -kiQ cos¢i (A202)

Rh.{ = Rr_i (A203)

Ih_ = I_i (A204)

/_J_. i = R_,i (A205)

lh, i = Ir, i

From equations (A175), (A176), and (A188)

(A206)

/ 0 }CW(Rr, + jIr,) (A207)
(QR + jQI) = _2T(Rr. + jIr.)

-'I)T (R,, + jib,)- ¢I'lW(Rh. + jIl,.)

where R and I are defined using either equations (A189) - (A193), (A194) - (A197).

or (A199) - (A206) depending on the form of the excitation. With Q expressed as in

equation (A175). the solution can be assumed to be of a similar form

so that

o(t) = (A208)

and

17(t ) = _}_[jtoNe j_''] (A209)
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_(t) = _[-_2NeJ't] (A210)

Substituting (A175) and (A208) - (A210)into (A173) and canceling the e j'_t term yields

[K(fl)- w2M(f_)+ jwC(f_)]l¢,l = Q

Equating realand imaginary parts of equation (A211) gives

(A211)

(K - w2M)NR - wCNi = QR (A212)

wCNR + (K - w2M)NI = Q1 (A213)

Equations (A212) and (A213) can be solved simultaneously for NR and NI.

The response vector iN defined by equation (A208) can be displayed in exactly the

same way as the N defined as the displacement part of the eigenvector in equation (A166).

The procedure is exactly the same except that the decay term that is ignored when

displaying the eigenvector never appears for the response vector; therefore, the procedure

will not be repeated here.

The nonlinear transient simulation obtains the complete solution of equation (A84)

with all of the nonlinearities and excitations that have been discussed. Rewriting equation

(A84) with the introduction of r/ as defined by equation (A155) gives

M/_ + CO + Kr/= q(t) (A214)

This equation can be put into a form that is convenient for numerical solution. First, it

can be rearranged as

f} = M-l[q(t)- Kr/- C@] (A215)

If the interconnection forces defined by equation (A66) and (A67) contain no inertia

terms, then M becomes the identity and inversion is not required. Equation (A215) can
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be written with no derivativeson the right hand side by introducing a new variable and

correspondingequation

_/=v (A216)

= M-I[Q(t)- Kr/- Cv]

This set of equationsis now in the generalform of

(A217)

_¢ = f(x,t) (A218)

These equations will be integrated using the Adams-Moulton predictor-corrector method.

The predictor equation for this method is

P
Xn÷l h [55f(Xn,tn) _ 59f(Xn_l,tn_,)-}- 37f(Xn_2,gn_:) - 9f(Xn_3,tn_3)]

: Xn q- -_-_

(A219)

The corrector equation is

h [9f(xp+l,tn+ )+19f(xn,t,_)--5f(xn--x,t,_--,)+f(xn--2,tn-2)] (A220)
Xn+l -- Xn nu _ i

This method requires four starting points which can be obtained by using a simpler

method. The method used here is the Euler or tangent line method

xn+l = x, + hf(xn,t,_) (A221)

The first point needed is the prescribed initial condition vector. Equation (A221) is used

three times to obtain enough values to begin using equations (A219) and (A220). An

alternate method is built into the simulation as an option. The alternate method was, not

used in this study and will not be described here.

The numerical integration produces the generalized coordinate motion at the discrete

time points
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= n. h (A222)

where n is an integer and varies from zero to the specified maximum. The generahzed

coordinate motion is transformed back into physical coordinates and these coordinates,

along with interaction forces and housing accelerations can be displayed versus time. It is

usually necessary to perform certain operations on the results after they have been gen-

erated. This post-processing includes such things as filters and Fourier transformations.

The M, C, and K matrices in equation (A217) are, in general, functions of engine

power level. As discussed earlier, due to tile relationship between power level and speed,

they can be expressed as functions of speed. If speed is a function of time, these matrices

(and M -1 if required) must be frequently re-evaluated. It is not necessary to re-evaluate

them at each time step, however. The frequency for re-evaluation is specified in terms

of a speed increment instead of time. This increment should be made small enough to

keep the change in the interconnection coefficients small. This approach allows for more

efficient numerical solution of the system equations.
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APPENDIX B

HPFTP MODEL NOMINAL DATA

The nominal rotor-housing interconnection coefficient data are shownin figures 113

through 119.Thesedata wereprovided by the SSME manufacturerwith the exceptionof

the pump interstagesealcross-coupledstiffnesscoefficients.The coefficientsprovided by

the manufacturer werereplacedwith functions of the form of equation 125wherea = .6.

The resulting curve closely matched the original data. The damping coefficients for all

Ib ,sec
bearings was a constant of 3.0-_--.. The frequencies of the nine free-free rotor component

modes are shown in table 2. The frequencies of the twenty free interface housing modes

are shown in table 3.

Table 2. Frequencies of free-flee rotor modes.

Mode 1 - 0.0 Hz.

Mode 2 - 0.0 Hz.

Mode 3 - 634.5 Hz.

Mode 4- 1350. Hz.

Mode 5- 1910. Hz.

Mode 6 - 2591. Hz.

Mode 7- 3216. Hz.

Mode 8 - 3935. Hz.

Mode 9 - 3953. Hz.

m
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Table 3. Frequenciesof free interfacehousingmodes.

Mode 1- 50.29Hz.

Mode 2 - 114.0Hz.

Mode 3 - 363.9Hz.

Mode 4 - 417.9Hz.

Mode 5 - 712.9Hz.

Mode 6 - 836.3Hz.

Mode 7- 920.1Itz.

Mode 8 - 995.8llz.

Mode 9- 1024. Hz.

Mode 10-1143. Hz.

Mode 11-1163. Hz.

Mode 12-1672. Hz.

Mode 13-1672. Hz.

Mode 14-1802. Hz.

Mode 15-1808. Hz.

Mode 16-2573. Hz.

Mode 17-2646. Hz.

Mode 18-2753. Hz.

Mode 19-3534. Hz.

Mode 20 -3536. Hz.
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